Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Introducción a la estadística empresarial

2.3 Medidas del centro de los datos

Introducción a la estadística empresarial2.3 Medidas del centro de los datos

Menú
Índice
  1. Prefacio
  2. 1 Muestreo y datos
    1. Introducción
    2. 1.1 Definiciones de estadística, probabilidad y términos clave
    3. 1.2 Datos, muestreo y variación de datos y muestreo
    4. 1.3 Niveles de medición
    5. 1.4 Diseño experimental y ética
    6. Términos clave
    7. Repaso del capítulo
    8. Tarea para la casa
    9. Referencias
    10. Soluciones
  3. 2 Estadística descriptiva
    1. Introducción
    2. 2.1 Datos mostrados
    3. 2.2 Medidas de la ubicación de los datos
    4. 2.3 Medidas del centro de los datos
    5. 2.4 Notación sigma y cálculo de la media aritmética
    6. 2.5 Media geométrica
    7. 2.6 Distorsión y media, mediana y moda
    8. 2.7 Medidas de la dispersión de los datos
    9. Términos clave
    10. Repaso del capítulo
    11. Repaso de fórmulas
    12. Práctica
    13. Tarea para la casa
    14. Resúmalo todo: tarea para la casa
    15. Referencias
    16. Soluciones
  4. 3 Temas de probabilidad
    1. Introducción
    2. 3.1 Terminología
    3. 3.2 Eventos mutuamente excluyentes e independientes
    4. 3.3 Dos reglas básicas de la probabilidad
    5. 3.4 Tablas de contingencia y árboles de probabilidad
    6. 3.5 Diagramas de Venn
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Uniéndolo todo: Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  5. 4 Variables aleatorias discretas
    1. Introducción
    2. 4.1 Distribución hipergeométrica
    3. 4.2 Distribución binomial
    4. 4.3 Distribución geométrica
    5. 4.4 Distribución de Poisson
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  6. 5 Variables aleatorias continuas
    1. Introducción
    2. 5.1 Propiedades de las funciones de densidad de probabilidad continuas
    3. 5.2 La distribución uniforme
    4. 5.3 La distribución exponencial
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  7. 6 La distribución normal
    1. Introducción
    2. 6.1 La distribución normal estándar
    3. 6.2 Uso de la distribución normal
    4. 6.3 Estimación de la binomial con la distribución normal
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  8. 7 El teorema del límite central
    1. Introducción
    2. 7.1 Teorema del límite central de las medias muestrales
    3. 7.2 Uso del teorema del límite central
    4. 7.3 Teorema del límite central de las proporciones
    5. 7.4 Factor de corrección de población finita
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  9. 8 Intervalos de confianza
    1. Introducción
    2. 8.1 Un intervalo de confianza para una desviación típica de la población, con un tamaño de muestra conocido o grande
    3. 8.2 Un intervalo de confianza para una desviación típica de población desconocida, caso de una muestra pequeña
    4. 8.3 Un intervalo de confianza para una proporción de población
    5. 8.4 Cálculo del tamaño de la muestra n: variables aleatorias continuas y binarias
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  10. 9 Pruebas de hipótesis con una muestra
    1. Introducción
    2. 9.1 Hipótesis nula y alternativa
    3. 9.2 Resultados y errores de tipo I y II
    4. 9.3 Distribución necesaria para la comprobación de la hipótesis
    5. 9.4 Ejemplos de pruebas de hipótesis completas
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  11. 10 Pruebas de hipótesis con dos muestras
    1. Introducción
    2. 10.1 Comparación de las medias de dos poblaciones independientes
    3. 10.2 Criterios de Cohen para efectos de tamaño pequeño, mediano y grande
    4. 10.3 Prueba de diferencias de medias: suponer varianzas de población iguales
    5. 10.4 Comparación de dos proporciones de población independientes
    6. 10.5 Dos medias poblacionales con desviaciones típicas conocidas
    7. 10.6 Muestras coincidentes o emparejadas
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  12. 11 La distribución chi-cuadrado
    1. Introducción
    2. 11.1 Datos sobre la distribución chi-cuadrado
    3. 11.2 Prueba de una sola varianza
    4. 11.3 Prueba de bondad de ajuste
    5. 11.4 Prueba de independencia
    6. 11.5 Prueba de homogeneidad
    7. 11.6 Comparación de las pruebas chi-cuadrado
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  13. 12 La distribución F y el anova de una vía
    1. Introducción
    2. 12.1 Prueba de dos varianzas
    3. 12.2 ANOVA de una vía
    4. 12.3 La distribución F y el cociente F
    5. 12.4 Datos sobre la distribución F
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  14. 13 Regresión lineal y correlación
    1. Introducción
    2. 13.1 El coeficiente de correlación r
    3. 13.2 Comprobación de la importancia del coeficiente de correlación
    4. 13.3 Ecuaciones lineales
    5. 13.4 La ecuación de regresión
    6. 13.5 Interpretación de los coeficientes de regresión: elasticidad y transformación logarítmica
    7. 13.6 Predicción con una ecuación de regresión
    8. 13.7 Cómo utilizar Microsoft Excel® para el análisis de regresión
    9. Términos clave
    10. Repaso del capítulo
    11. Práctica
    12. Soluciones
  15. A Cuadros estadísticos
  16. B Oraciones, símbolos y fórmulas matemáticas
  17. Índice

El “centro” de un conjunto de datos también es una forma de describir la ubicación. Las dos medidas más utilizadas del “centro” de los datos son la media (promedio) y la mediana. Para calcular el peso medio de 50 personas, sume los 50 pesos y los divide entre 50. Técnicamente es la media aritmética. Más adelante hablaremos de la media geométrica. Para hallar la mediana del peso de las 50 personas, ordene los datos y halle el número que divide los datos en dos partes iguales, lo que significa un número igual de observaciones en cada lado. El peso de 25 personas está por debajo de ese peso y 25 personas están por encima de ese peso. La mediana suele ser una mejor medida del centro cuando hay valores extremos o atípicos porque no se ve afectada por los valores numéricos precisos de los atípicos. La media es la medida más común del centro.

NOTA

Las palabras “media” y “promedio” se suelen usar indistintamente. La sustitución de una palabra por otra es una práctica habitual. El término técnico es “media aritmética” y “promedio” es técnicamente un lugar central. Formalmente, los matemáticos llaman a la media aritmética el primer momento de la distribución. Sin embargo, en la práctica, entre los no estadísticos, se suele aceptar “promedio” por “media aritmética”.

Cuando cada valor del conjunto de datos no es único, la media se puede calcular multiplicando cada valor distinto por su frecuencia y dividiendo después la suma por el número total de valores de los datos. La letra utilizada para representar la media muestral es una x con una barra encima (se pronuncia “barra de x”): x x .

La letra griega μ (se pronuncia “mu”) representa la media de la población. Uno de los requisitos para que la media muestral sea una buena estimación de la media de la población es que la muestra tomada sea realmente aleatoria.

Para ver que ambas formas de calcular la media son iguales, considere la muestra:
1; 1; 1; 2; 2; 3; 4; 4; 4; 4; 4

x = 1 + 1 + 1 + 2 + 2 + 3 + 4 + 4 + 4 + 4 + 4 11 = 2,7 x = 1 + 1 + 1 + 2 + 2 + 3 + 4 + 4 + 4 + 4 + 4 11 =2,7
x = 3(1)+2(2)+1(3)+5(4) 11 =2,7 x = 3(1)+2(2)+1(3)+5(4) 11 =2,7

En el segundo cálculo, las frecuencias son 3, 2, 1 y 5.

Puede hallar rápidamente la ubicación de la mediana utilizando la expresión n + 1 2 n + 1 2 .

La letra n es el número total de valores de datos en la muestra. Si n es un número impar, la mediana es el valor del centro de los datos ordenados (ordenados de menor a mayor). Si n es un número par, la mediana es igual a los dos valores del centro sumados y divididos entre dos después de ordenar los datos. Por ejemplo, si el número total de valores de datos es de 97, entonces n + 1 2 n + 1 2 = 97 + 1 2 97 + 1 2 = 49. La mediana es el 49.º valor de los datos ordenados. Si el número total de valores de datos es 100, entonces n + 1 2 n + 1 2 = 100 + 1 2 100 + 1 2 = 50,5. La mediana está a medio camino entre los valores 50.º y 51.º. La ubicación de la mediana y el valor de la mediana no son lo mismo. La letra M mayúscula se utiliza a menudo para representar la mediana. El siguiente ejemplo ilustra la ubicación de la mediana y su valor.

Ejemplo 2.24

Translation missing: es.problem

Los datos sobre el sida que indican el número de meses que vive un paciente con sida después de tomar un nuevo medicamento con anticuerpos son los siguientes (de menor a mayor):
3; 4; 8; 8; 10; 11; 12; 13; 14; 15; 15; 16; 16; 17; 17; 18; 21; 22; 22; 24; 24; 25; 26; 26; 27; 27; 29; 29; 31; 32; 33; 33; 34; 34; 35; 37; 40; 44; 44; 47;
Calcule la media y la mediana.

Ejemplo 2.25

Translation missing: es.problem

Supongamos que en una pequeña ciudad de 50 personas una de ellas gana 5.000.000 de dólares al año y las otras 49 ganan 30.000 dólares cada una. ¿Cuál es la mejor medida del “centro”: la media o la mediana?

Otra medida del centro es la moda. La moda es el valor más frecuente. Puede haber más de una moda en un conjunto de datos siempre que esos valores tengan la misma frecuencia y esta sea la más alta. Un conjunto de datos con dos modas se denomina bimodal.

Ejemplo 2.26

Las calificaciones de los exámenes de Estadística de 20 estudiantes son las siguientes:

50; 53; 59; 59; 63; 63; 72; 72; 72; 72; 72; 76; 78; 81; 83; 84; 84; 84; 90; 93

Translation missing: es.problem

Calcule la moda.

Ejemplo 2.27

Las cinco calificaciones del examen sobre bienes raíces son 430, 430, 480, 480, 495. El conjunto de datos es bimodal porque las calificaciones 430 y 480 aparecen dos veces cada una.

¿Cuándo la moda es la mejor medida del “centro”? Piense en un programa de adelgazamiento que anuncia una pérdida media de peso de seis libras la primera semana del programa. La moda podría indicar que la mayoría de las personas pierden dos libras la primera semana, lo que hace que el programa sea menos atractivo.

NOTA

La moda puede calcularse tanto para datos cualitativos como para cuantitativos. Por ejemplo, si el conjunto de datos es: rojo, rojo, rojo, verde, verde, amarillo, púrpura, negro, azul, la moda es rojo.

Cálculo de la media aritmética de tablas de frecuencias agrupadas

Cuando solo se dispone de datos agrupados no se conocen los valores individuales de los datos (solo conocemos los intervalos y las frecuencias de los intervalos); por lo tanto, no se puede calcular una media exacta para el conjunto de datos. Lo que debemos hacer es estimar la media real calculando la media de una tabla de frecuencias. Una tabla de frecuencias es una representación de datos en la que se muestran datos agrupados junto con las frecuencias correspondientes. Para calcular la media de una tabla de frecuencias agrupadas podemos aplicar la definición básica de media: media = suma de los datos number of data values suma de los datos number of data values Simplemente tenemos que modificar la definición para que se ajuste a las restricciones de una tabla de frecuencias.

Como no conocemos los valores individuales de los datos podemos hallar el punto medio de cada intervalo. El punto medio es límite inferior + límite superior 2 límite inferior + límite superior 2 . Ahora podemos modificar la definición de la media para que sea Tabla de media de la frecuencia = fm f Tabla de media de la frecuencia = fm f donde f = la frecuencia del intervalo y m = el punto medio del intervalo.

Ejemplo 2.28

Translation missing: es.problem

Se presenta una tabla de frecuencias que muestra la prueba estadística anterior del profesor Blount. Calcule la mejor estimación de la media de la clase.

Intervalo de grado Número de estudiantes
50–56,5 1
56,5–62,5 0
62,5–68,5 4
68,5–74,5 4
74,5–80,5 2
80,5–86,5 3
86,5–92,5 4
92,5–98,5 1
Tabla 2.24

Inténtelo 2.28

Maris realizó un estudio sobre el efecto que tiene jugar videojuegos en el recuerdo. Como parte de su estudio recopiló los siguientes datos:

Horas que los adolescentes dedican a los videojuegos Número de adolescentes
0–3,53
3,5–7,57
7,5–11,512
11,5–15,57
15,5–19,59
Tabla 2.26

¿Cuál es la mejor estimación del número medio de horas dedicadas a los videojuegos?

Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.