Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Física universitaria volumen 1

Problemas De Desafío

Física universitaria volumen 1Problemas De Desafío

Problemas De Desafío

75.

Una fuerza horizontal FF se aplica a una esfera uniforme en dirección exacta hacia el centro de la esfera, como se muestra a continuación. Halle la magnitud de esta fuerza para que la esfera permanezca en equilibrio estático. ¿Cuál es la fuerza de fricción de la pendiente sobre la esfera?

La figura muestra una esfera de radio R y masa M que se coloca en el lado del triángulo que forma el ángulo theta con el suelo. Se aplica una fuerza F a la esfera.
76.

Cuando un motor se coloca en el soporte de una plataforma articulada, como se ve a continuación, su peso puede utilizarse para mantener la tensión en la correa de transmisión. Cuando el motor no está en marcha las tensiones T1T1 y T2T2 son iguales. La masa total de la plataforma y del motor es de 100,0 kg, mientras que el diámetro de la polea de la correa de transmisión es 16,0cm16,0cm cuando el motor está apagado, calcule: (a) la tensión en la correa y (b) la fuerza en el soporte de la plataforma articulada en el punto C. Suponga que el centro de masa del motor más la plataforma está en el centro del motor.

La figura muestra un motor colocado en el soporte de una plataforma articulada. El centro del motor está 25 cm por encima y 30 cm a la derecha del punto de apoyo C. La tensión T1 forma un ángulo de 40 grados con la línea paralela al suelo. La tensión T2 forma un ángulo de 15 grados con la línea paralela al suelo.
77.

Dos ruedas A y B con pesos w y 2w, respectivamente, están unidas por una varilla uniforme con peso w/2, como se muestra a continuación. Las ruedas giran libremente por las superficies inclinadas. Determine el ángulo que forma la varilla con la horizontal cuando el sistema está en equilibrio. Pista: Hay cinco fuerzas que actúan sobre la barra, que son dos pesos de las ruedas, dos fuerzas de reacción normales en los puntos donde las ruedas hacen contacto con la cuña y el peso de la barra.

La figura muestra las ruedas A y B conectadas por la varilla y situadas en el lado opuesto del triángulo rectángulo. El lado en el que se encuentra la rueda A forma un ángulo de 60 grados con la línea paralela al suelo. El lado en el que se encuentra la rueda B forma un ángulo de 30 grados con la línea paralela al suelo.
78.

Se van añadiendo pesos a un platillo hasta que una rueda de masa M y radio R es arrastrada por un obstáculo de altura d, como se muestra a continuación. ¿Cuál es la masa mínima de las pesas más el platillo necesaria para conseguirlo?

La figura muestra una bandeja conectada a la rueda por un cable. El alambre tiene una masa M y un radio R. Un obstáculo de altura D separa la rueda del plato.
79.

Para levantar una pala de tierra, el jardinero empuja hacia abajo el extremo de la pala y tira hacia arriba a distancia l2l2 desde el final, como se muestra a continuación. El peso de la pala es mgmg y actúa en el punto de aplicación de F2.F2. Calcule las magnitudes de las fuerzas F1F1 y F2F2 como funciones de l1,l1, l2,l2, mg, y el peso W de la carga. ¿Por qué sus respuestas no dependen del ángulo θθ que hace la pala con la horizontal?

La figura muestra a un jardinero levantando una pala llena de tierra con ambas manos. La fuerza F1 se aplica a la mano que está atrás. La fuerza F2 se aplica a la mano que está adelante. La fuerza w se aplica a la parte delantera de la pala con el suelo. La distancia entre la mano de atrás y la parte delantera de la pala es l1. La distancia entre la mano de atrás y la de adelante es de l2. El ángulo entre la pala y la línea paralela al suelo es theta.
80.

Una varilla uniforme de longitud 2R y masa M está unida a un pequeño collarín C y descansa sobre una superficie cilíndrica de radio R, como se muestra a continuación. Si el collarín puede deslizarse sin fricción a lo largo de la guía vertical, calcule el ángulo θθ para el que la varilla está en equilibrio estático.

La figura muestra una varilla uniforme de longitud 2R y masa que M está unida a un collarín C y descansa sobre una superficie cilíndrica de radio R. El ángulo entre el collarín y la línea paralela al suelo es theta.
81.

El poste que se muestra a continuación está en un 90,0°90,0° inclinado en una línea eléctrica y, por tanto, está sometido a más fuerza de corte que los postes en las partes rectas de la línea. La tensión en cada línea es 4.00×104N,4.00×104N, en los ángulos indicados. El poste tiene 15,0 m de altura, un diámetro de 18,0 cm y se puede considerar que tiene la mitad de la resistencia de la madera dura. (a) Calcule la compresión del poste. (b) Halle cuánto se dobla y en qué dirección. (c) Halle la tensión en un cable de sujeción utilizado para mantener el poste recto si está unido a la parte superior del poste en un ángulo de 30,0°30,0° con la vertical. El cable de sujeción está en la dirección opuesta a la curva.

La figura muestra un poste al que se aplican dos fuerzas T y una fuerza Tgw. Hay un ángulo de 90 grados entre dos fuerzas T. Hay un ángulo de 80 grados entre el plano en el que se aplican las fuerzas T y el poste. Hay un ángulo de 30 grados entre Tgw y el polo.
Cita/Atribución

Este libro no puede ser utilizado en la formación de grandes modelos de lenguaje ni incorporado de otra manera en grandes modelos de lenguaje u ofertas de IA generativa sin el permiso de OpenStax.

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/f%C3%ADsica-universitaria-volumen-1/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/f%C3%ADsica-universitaria-volumen-1/pages/1-introduccion
Información sobre citas

© 13 abr. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.