Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Física universitaria volumen 1

Problemas Adicionales

Física universitaria volumen 1Problemas Adicionales

Problemas Adicionales

69.

El coeficiente de fricción estática entre la goma del lápiz y el tablero de la mesa es μs=0,80.μs=0,80. Si la fuerza FF se aplica a lo largo del eje del lápiz, como se muestra a continuación, ¿cuál es el ángulo mínimo en el que el lápiz puede permanecer sin resbalar? Ignore el peso del lápiz.

La figura muestra un lápiz que se apoya en una esquina. El extremo de la goma de borrar toca un suelo horizontal rugoso. El ángulo entre el lápiz y el suelo es theta.
70.

Un lápiz se apoya en una esquina, como se muestra a continuación. El extremo afilado del lápiz toca una superficie vertical lisa y el extremo de la goma toca un suelo horizontal rugoso. El coeficiente de fricción estática entre la goma de borrar y el suelo es μs=0,80.μs=0,80. El centro de masa del lápiz está situado a 9,0 cm de la punta de la goma y a 11,0 cm de la punta de la mina del lápiz. Halle el ángulo mínimo θθ para que el lápiz no se deslice.

La figura muestra un lápiz que se apoya en una esquina. El extremo afilado del lápiz toca una superficie vertical lisa y el extremo de la goma toca un suelo horizontal rugoso. El ángulo entre el lápiz y el suelo es theta. El centro de masa está a 9 cm de la goma de borrar y a 11 cm del extremo afilado.
71.

Un tablón uniforme de 4,0 m que pesa 200,0 N se apoya en la esquina de una pared, como se muestra a continuación. No hay fricción en el punto en el que el tablón se encuentra con la esquina. (a) Halle las fuerzas que la esquina y el suelo ejercen sobre el tablón. (b) ¿Cuál es el coeficiente mínimo de fricción estática entre el suelo y el tablón para que el tablón no resbale?

La figura muestra un tablón uniforme que se apoya en la esquina de una pared. Una parte del tablón, desde el suelo hasta la esquina de la pared, tiene 3,0 m de longitud, y otra parte de 1,0 m por encima de la pared. La distancia entre la parte del tablón que toca el suelo y la esquina de la pared es de 1,5 m.
72.

Un niño de 40 kg salta desde una altura de 3,0 m, aterriza sobre un pie y se detiene en 0,10 s después de tocar el suelo. Supongamos que llega al reposo a desaceleración constante. Si el área total de la sección transversal de los huesos de las piernas justo por encima de los tobillos es 3,0cm2,3,0cm2, ¿cuál es el estrés de compresión en estos huesos? Los huesos de las piernas pueden fracturarse cuando se someten a un estrés superior a 1,7×108Pa.1,7×108Pa. ¿El niño corre peligro de fracturarse la pierna?

73.

Dos varillas finas, una de acero y otra de aluminio, se unen de extremo a extremo. Cada varilla tiene una longitud de 2,0 m y una sección transversal 9,1mm2.9,1mm2. Si se aplica una fuerza de tracción de 10.000 N en cada extremo de la combinación, calcule: (a) el estrés en cada varilla; (b) la tensión en cada varilla y (c) la elongación de cada varilla.

74.

Dos varillas, una de cobre y otra de acero, tienen las mismas dimensiones. Si la varilla de cobre se estira 0,15 mm bajo cierto estrés, ¿cuánto se estira la varilla de acero bajo el mismo estrés?

Cita/Atribución

Este libro no puede ser utilizado en la formación de grandes modelos de lenguaje ni incorporado de otra manera en grandes modelos de lenguaje u ofertas de IA generativa sin el permiso de OpenStax.

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/f%C3%ADsica-universitaria-volumen-1/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/f%C3%ADsica-universitaria-volumen-1/pages/1-introduccion
Información sobre citas

© 13 abr. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.