Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
College Physics for AP® Courses

Chapter 28

College Physics for AP® CoursesChapter 28

Problems & Exercises

1.

(a) 1.0328

(b) 1.15

3.

5 . 96 × 10 8 s 5 . 96 × 10 8 s size 12{5 "." "96" times "10" rSup { size 8{ - 8} } " s"} {}

5.

0.800 c 0.800 c

7.

0 . 140 c 0 . 140 c size 12{0 "." "140"c} {}

9.

(a) 0.745c0.745c size 12{0 "." "745"c} {}

(b) 0.99995c0.99995c size 12{0 "." "99995"c} {} (to five digits to show effect)

11.

(a) 0.996

(b) γγ size 12{γ} {} cannot be less than 1.

(c) Assumption that time is longer in moving ship is unreasonable.

12.

48.6 m

14.

(a) 1.387 km = 1.39 km

(b) 0.433 km

(c) L = L 0 γ = 1.387 × 103m 3.20 = 433.4 m = 0.433 km L = L 0 γ = 1.387 × 103m 3.20 = 433.4 m = 0.433 km

Thus, the distances in parts (a) and (b) are related when γ=3.20γ=3.20.

16.

(a) 4.303 y (to four digits to show any effect)

(b) 0.1434 y

(c) Δt = γΔt 0 γ = Δt Δt 0 = 4 . 303 y 0 . 1434 y = 30 . 0 Δt = γΔt 0 γ = Δt Δt 0 = 4 . 303 y 0 . 1434 y = 30 . 0 size 12{"Δt"="γΔt" rSub { size 8{0} } drarrow γ= { {"Δt"} over {"Δt" rSub { size 8{0} } } } = { {4 "." "303 y"} over {0 "." "1434 y"} } = {underline {"30" "." 0}} } {}

Thus, the two times are related when γ= 30 . 00 γ= 30 . 00 size 12{ ital "γ=""30" "." "00"} {} .

18.

(a) 0.250

(b) γγ size 12{γ} {} must be ≥1

(c) The Earth-bound observer must measure a shorter length, so it is unreasonable to assume a longer length.

20.

(a) 0.909c0.909c size 12{0 "." "909"c} {}

(b) 0.400c0.400c size 12{0 "." "400"c} {}

22.

0 . 198 c 0 . 198 c size 12{0 "." "198"c} {}

24.

a) 658 nm658 nm size 12{"658""nm"} {}

b) red

c) v/c=9.92×105v/c=9.92×105 size 12{v/ ital "c="9 "." "92" times "10" rSup { size 8{ - 5} } } {} (negligible)

26.

0 . 991 c 0 . 991 c size 12{0 "." "991"c} {}

28.

0 . 696 c 0 . 696 c size 12{0 "." "696"c} {}

30.

0 . 01324 c 0 . 01324 c size 12{0 "." "01324" c} {}

32.

u=cu=c, so

u= v+u 1 + ( vu′/ c 2 ) = v+c 1 + ( vc / c 2 ) = v+c 1 + ( v / c ) = c ( v+c ) c+v = c u= v+u 1 + ( vu′/ c 2 ) = v+c 1 + ( vc / c 2 ) = v+c 1 + ( v / c ) = c ( v+c ) c+v = c size 12{alignl { stack { ital "u=" { { ital "v+u'"} over {1+ \( ital "vu""'/"c rSup { size 8{2} } \) } } = { { ital "v+c"} over {1+ \( ital "vc"/c rSup { size 8{2} } \) } } = { { ital "v+c"} over {1+ \( v/c \) } } {} # { {c \( ital "v+c" \) } over { ital "c+v"} } = {underline {c}} {} } } } {}

34.

a) 0.99947c0.99947c

b) 1.2064×1011 y1.2064×1011 y size 12{1 "." "2064" times "10" rSup { size 8{"11"} } " y"} {}

c) 1.2058×1011 y1.2058×1011 y size 12{1 "." "2058" times "10" rSup { size 8{"11"} } " y"} {} (all to sufficient digits to show effects)

35.

4 . 09 × 10 –19 kg m/s 4 . 09 × 10 –19 kg m/s

37.

(a) 3.000000015 ×1013 kgm/s3.000000015 ×1013 kgm/s size 12{ {underline {3 "." "000000015 " times "10" rSup { size 8{"13"} } " kg" cdot "m/s"}} } {}.

(b) Ratio of relativistic to classical momenta equals 1.000000005 (extra digits to show small effects)

39.

2.9957 × 10 8 m/s 2.9957 × 10 8 m/s size 12{ {underline {2 "." "988" times "10" rSup { size 8{8} } " m/s"}} } {}

41.

(a) 1.121×10–8 m/s1.121×10–8 m/s size 12{1 "." "121" times "10" rSup { size 8{"-8"} } " m/s"} {}

(b) The small speed tells us that the mass of a proton is substantially smaller than that of even a tiny amount of macroscopic matter!

43.

8.20 × 10 14 J 8.20 × 10 14 J

0.512 MeV

45.

2 . 3 × 10 30 kg 2 . 3 × 10 30 kg size 12{2 "." 3 times "10" rSup { size 8{ - "30"} } `"kg"} {}

47.

(a) 1 . 11 × 10 27 kg 1 . 11 × 10 27 kg size 12{1 "." "11" times "10" rSup { size 8{ - "27"} } `"kg"} {}

(b) 5 . 56 × 10 5 5 . 56 × 10 5 size 12{5 "." "56" times "10" rSup { size 8{ - 5} } } {}

49.

7 . 1 × 10 3 kg 7 . 1 × 10 3 kg

7 . 1 × 10 3 7 . 1 × 10 3 size 12{7 "." 1 times "10" rSup { size 8{ - 3} } } {}

The ratio is greater for hydrogen.

51.

208

0.999988 c 0.999988 c

53.

6.92 × 10 5 J 6.92 × 10 5 J size 12{6 "." "92" times "10" rSup { size 8{5} } `J} {}

1.54

55.

(a) 0 . 914 c 0 . 914 c size 12{0 "." "914"c} {}

(b) The rest mass energy of an electron is 0.511 MeV, so the kinetic energy is approximately 150% of the rest mass energy. The electron should be traveling close to the speed of light.

57.

90.0 MeV

59.

(a) E 2 = p 2 c 2 + m 2 c 4 = γ 2 m 2 c 4 , so that p 2 c 2 = γ 2 1 m 2 c 4 , and therefore pc 2 mc 2 2 = γ 2 1 E 2 = p 2 c 2 + m 2 c 4 = γ 2 m 2 c 4 , so that p 2 c 2 = γ 2 1 m 2 c 4 , and therefore pc 2 mc 2 2 = γ 2 1

(b) yes

61.

1 . 07 × 10 3 1 . 07 × 10 3 size 12{1 "." "07" times "10" rSup { size 8{3} } } {}

63.

6 . 56 × 10 8 kg 6 . 56 × 10 8 kg size 12{6 "." "56" times "10" rSup { size 8{ - 8} } `"kg"} {}

4.37 × 10 10 4.37 × 10 10 size 12{4 "." "20" times "10" rSup { size 8{ - "12"} } } {}

65.

0.314 c0.314 c size 12{c} {}

0.99995 c 0.99995 c size 12{c} {}

67.

(a) 1.00 kg

(b) This much mass would be measurable, but probably not observable just by looking because it is 0.01% of the total mass.

69.

(a) 6 . 3 × 10 11 kg/s 6 . 3 × 10 11 kg/s

(b) 4 . 5 × 10 10 y 4 . 5 × 10 10 y

(c) 4 . 44 × 10 9 kg 4 . 44 × 10 9 kg

(d) 0.32%

Test Prep for AP® Courses

1.

(a)

3.

The relativistic Doppler effect takes into account the special relativity concept of time dilation and also does not require a medium of propagation to be used as a point of reference (light does not require a medium for propagation).

5.

Relativistic kinetic energy is given as KE rel =(γ1)m c 2 KE rel =(γ1)m c 2

where γ= 1 1 v 2 c 2 γ= 1 1 v 2 c 2

Classical kinetic energy is given as KE class = 1 2 m v 2 KE class = 1 2 m v 2

At low velocities v=0 v=0 , a binomial expansion and subsequent approximation of γ γ gives:

γ=1+ 1 v 2 2 c 2 γ=1+ 1 v 2 2 c 2 or γ1= 1 v 2 2 c 2 γ1= 1 v 2 2 c 2

Substituting γ1 γ1 in the expression for KE rel KE rel gives

KE rel =[ 1 v 2 2 c 2 ]m c 2 = 1 2 m v 2 = KE class KE rel =[ 1 v 2 2 c 2 ]m c 2 = 1 2 m v 2 = KE class

Hence, relativistic kinetic energy becomes classical kinetic energy when vc vc .

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
Citation information

© Mar 3, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.