Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
College Physics for AP® Courses

Chapter 27

College Physics for AP® CoursesChapter 27

Problems & Exercises

1.

1 / 1 . 333 = 0 . 750 1 / 1 . 333 = 0 . 750 size 12{1/1 "." "333"=0 "." "750"} {}

3.

1.49, Polystyrene

5.

0.877 glass to water

6.

0 . 516º 0 . 516º size 12{0 "." "516"°} {}

8.

1 . 22 × 10 6 m 1 . 22 × 10 6 m size 12{1 "." "22" times "10" rSup { size 8{ - 6} } `m} {}

10.

600 nm

12.

2 . 06º 2 . 06º size 12{2 "." "06"°} {}

14.

1200 nm (not visible)

16.

(a) 760 nm

(b) 1520 nm

18.

For small angles sinθtanθθ(in radians)sinθtanθθ(in radians) size 12{"sin"θ - "tan"θ approx θ` \( "in"`"radians" \) } {}.

For two adjacent fringes we have,

d sin θ m = d sin θ m = size 12{d`"sin"θ rSub { size 8{m} } =mλ} {}

and

d sin θ m + 1 = m + 1 λ d sin θ m + 1 = m + 1 λ size 12{d`"sin "θ rSub { size 8{m+1} } = left (m+1 right )λ} {}

Subtracting these equations gives

d sin θ m + 1 sin θ m = m + 1 m λ d θ m + 1 θ m = λ tan θ m = y m x θ m d y m + 1 x y m x = λ d Δ y x = λ Δ y = d d sin θ m + 1 sin θ m = m + 1 m λ d θ m + 1 θ m = λ tan θ m = y m x θ m d y m + 1 x y m x = λ d Δ y x = λ Δ y = d alignl { stack { size 12{d left ("sin"θ rSub { size 8{m+1} } - " sin"θ rSub { size 8{m} } right )= left [ left (m+1 right ) - m right ]λ} {} # d left (θ rSub { size 8{m+1} } - θ"" lSub { size 8{m} } right )=λ {} # "tan"θ rSub { size 8{m} } = { {y rSub { size 8{m} } } over {x} } approx θ"" lSub { size 8{m} } drarrow d left ( { {y rSub { size 8{m+1} } } over {x} } - { {y rSub { size 8{m} } } over {x} } right )=λ {} # d { {Δy} over {x} } =λ drarrow {underline {Δy= { {xλ} over {d} } }} {} } } {}

20.

450 nm

21.

5 . 97º 5 . 97º size 12{5 "." "97"°} {}

23.

8 . 99 × 10 3 8 . 99 × 10 3 size 12{8 "." "99" times "10" rSup { size 8{3} } } {}

25.

707 nm

27.

( a )  11.8º , 12.5º , 14.1º , 19.2º ( a )  11.8º , 12.5º , 14.1º , 19.2º alignl { stack { size 12{ \( a \) `"11" "." 8°,`"12" "." 5°,`"14" "." 1°,`"19" "." 2°} {} # size 12{ \( b \) `"24" "." 2°,`"25" "." 7°,`"29" "." 1°,`"41" "." 0°} {} } } {}

( b )  24.2º , 25.7º , 29.1º , 41.0º ( b )  24.2º , 25.7º , 29.1º , 41.0º alignl { stack { size 12{ \( a \) `"11" "." 8°,`"12" "." 5°,`"14" "." 1°,`"19" "." 2°} {} # size 12{ \( b \) `"24" "." 2°,`"25" "." 7°,`"29" "." 1°,`"41" "." 0°} {} } } {}

(c) Decreasing the number of lines per centimeter by a factor of x means that the angle for the x­‐order maximum is the same as the original angle for the first-­ order maximum.

29.

589.1 nm and 589.6 nm

31.

28.7º 28.7º size 12{"28" "." "69"°} {}

33.

43 . 43 . size 12{"43" "." 2°} {}

35.

90 . 90 . size 12{"90" "." 0°} {}

37.

(a) The longest wavelength is 333.3 nm, which is not visible.

(b) 333 nm (UV)

(c) 6.58×103cm6.58×103cm size 12{6 "." "58" times "10" rSup { size 8{3} } `"cm"} {}

39.

1 . 13 × 10 2 m 1 . 13 × 10 2 m size 12{1 "." "13" times "10" rSup { size 8{ - 2} } `m} {}

41.

(a) 42.3 nm

(b) Not a visible wavelength

The number of slits in this diffraction grating is too large. Etching in integrated circuits can be done to a resolution of 50 nm, so slit separations of 400 nm are at the limit of what we can do today. This line spacing is too small to produce diffraction of light.

43.

(a) 33.33. size 12{"33" "." 4°} {}

(b) No

45.

(a) 1.35×106m1.35×106m size 12{1 "." "35" times "10" rSup { size 8{ - 6} } `m} {}

(b) 69.69. size 12{"69" "." 9°} {}

47.

750 nm

49.

(a) 9.04º9.04º size 12{9 "." "04"°} {}

(b) 12

51.

(a) 0.0150º0.0150º size 12{0 "." "0150"°} {}

(b) 0.262 mm

(c) This distance is not easily measured by human eye, but under a microscope or magnifying glass it is quite easily measurable.

53.

(a) 30.30. size 12{"30" "." 1°} {}

(b) 48.48. size 12{"48" "." 7°} {}

(c) No

(d) 1=(2)(14.5º)=29º,θ2θ1=30.05º14.=15.56º1=(2)(14.5º)=29º,θ2θ1=30.05º14.=15.56º size 12{2θ rSub { size 8{1} } = \( 2 \) \( "14" "." 5° \) ="29"°,~θ rSub { size 8{2} } - θ rSub { size 8{1} } ="30" "." "05"° - "14" "." 5"°=""15" "." "56"°} {}. Thus, 29º(2)(15.56º)=31.29º(2)(15.56º)=31. size 12{"29"° approx \( 2 \) \( "15" "." "56"° \) ="31" "." 1°} {}.

55.

23.23. size 12{"23" "." 6°} {} and 53.53. size 12{"53" "." 1°} {}

57.

(a) 1.63×104rad1.63×104rad size 12{1 "." "63" times "10" rSup { size 8{ - 4} } `"rad"} {}

(b) 326 ly

59.

1 . 46 × 10 5 rad 1 . 46 × 10 5 rad size 12{1 "." "46" times "10" rSup { size 8{ - 5} } `"rad"} {}

61.

(a) 3.04×107rad3.04×107rad size 12{3 "." "04" times "10" rSup { size 8{ - 7} } `"rad"} {}

(b) Diameter of 235 m235 m

63.

5.15 cm

65.

(a) Yes. Should easily be able to discern.

(b) The fact that it is just barely possible to discern that these are separate bodies indicates the severity of atmospheric aberrations.

70.

532 nm (green)

72.

83.9 nm

74.

620 nm (orange)

76.

380 nm

78.

33.9 nm

80.

4 . 42 × 10 5 m 4 . 42 × 10 5 m size 12{4 "." "42" times "10" rSup { size 8{ - 5} } `m} {}

82.

The oil film will appear black, since the reflected light is not in the visible part of the spectrum.

84.

45 . 45 . size 12{"45" "." 0°} {}

86.

45 . 7 mW/m 2 45 . 7 mW/m 2 size 12{"45" "." 7`"mW/m" rSup { size 8{2} } } {}

88.

90 . 0% 90 . 0% size 12{"90" "." 0%} {}

90.

I 0 I 0 size 12{I rSub { size 8{0} } } {}

92.

48 . 48 . size 12{"48" "." 8°} {}

94.

41 . 41 . size 12{"41" "." 2°} {}

96.

(a) 1.92, not diamond (Zircon)

(b) 55.55. size 12{"55" "." 2°} {}

98.

B 2 = 0 . 707 B 1 B 2 = 0 . 707 B 1 size 12{B rSub { size 8{2} } =0 "." "707"B rSub { size 8{1} } } {}

100.

(a) 2.07×10-22.07×10-2 °C/s

(b) Yes, the polarizing filters get hot because they absorb some of the lost energy from the sunlight.

Test Prep for AP® Courses

1.

(b)

3.

(b) and (c)

5.

(b)

7.

(b)

9.

(b)

11.

(d)

13.

(b)

15.

(d)

17.

(b)

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
Citation information

© Mar 3, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.