Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
College Physics for AP® Courses

Chapter 29

College Physics for AP® CoursesChapter 29

Problems & Exercises

1.

(a) 0.070 eV

(b) 14

3.

(a) 2.21×1034 J2.21×1034 J size 12{2 "." "21" times "10" rSup { size 8{"34"} } " J"} {}

(b) 2.26×10342.26×1034 size 12{2 "." "26" times "10" rSup { size 8{"34"} } } {}

(c) No

4.

263 nm

6.

3.69 eV

8.

0.483 eV

10.

2.25 eV

12.

(a) 264 nm

(b) Ultraviolet

14.

1.95 × 10 6 m/s 1.95 × 10 6 m/s size 12{1 "." "95" times "10" rSup { size 8{6} } " m/sec"} {}

16.

(a) 4.02×1015/s4.02×1015/s size 12{4 "." "02" times "10" rSup { size 8{"15"} } "/s"} {}

(b) 0.256 mW

18.

(a) –1.90 eV–1.90 eV

(b) Negative kinetic energy

(c) That the electrons would be knocked free.

20.

6.34 × 10 9 eV 6.34 × 10 9 eV size 12{6 "." "34" times "10" rSup { size 8{ - 9} } " eV"} {} , 1.01 × 10 27 J 1.01 × 10 27 J size 12{6 "." "34" times "10" rSup { size 8{ - 9} } " eV"} {}

22.

2 . 42 × 10 20 Hz 2 . 42 × 10 20 Hz size 12{2 "." "42" times "10" rSup { size 8{"20"} } " Hz"} {}

24.

hc = 6.62607 × 10 34 J s 2.99792 × 10 8 m/s 10 9 nm 1 m 1.00000 eV 1.60218 × 10 19 J = 1239.84 eV nm 1240 eV nm hc = 6.62607 × 10 34 J s 2.99792 × 10 8 m/s 10 9 nm 1 m 1.00000 eV 1.60218 × 10 19 J = 1239.84 eV nm 1240 eV nm alignl { stack { size 12{ ital "hc"= left (6 "." "62607" times "10" rSup { size 8{ - "34"} } `J cdot s right ) left (2 "." "99792" times "10" rSup { size 8{8} } `"m/s" right ) left ( { {"10" rSup { size 8{9} } `"nm"} over {1`m} } right ) left ( { {1 "." "00000"`"eV"} over {1 "." "60218" times "10" rSup { size 8{ - "19"} } `J} } right )} {} # ="1239" "." "84 eV" cdot "nm" {} # approx "1240 eV" cdot "nm" {} } } {}

26.

(a) 0.0829 eV

(b) 121

(c) 1.24 MeV

(d) 1.24×1051.24×105 size 12{2 "." "24" times "10" rSup { size 8{5} } } {}

28.

(a) 25.0 × 103 eV 25.0 × 103 eV size 12{" 25 " times " 10" rSup { size 8{3} } " eV"} {}

(b) 6.04 × 1018 Hz 6.04 × 1018 Hz size 12{" 6" "." "04 " times " 10" rSup { size 8{"18"} } " Hz"} {}

30.

(a) 2.69

(b) 0.371

32.

(a) 1.25 × 1013 photons/s 1.25 × 1013 photons/s size 12{" 1" "." "25 " times " 10" rSup { size 8{"13"} } " photons/s"} {}

(b) 997 km

34.

8.33 × 10 13 photons/s 8.33 × 10 13 photons/s size 12{" 8" "." "33 " times " 10" rSup { size 8{"13"} } " photons/s"} {}

36.

181 km

38.

(a) 1.66 × 10 32 kg m/s 1.66 × 10 32 kg m/s size 12{1 "." "66" times "10" rSup { size 8{ - "32"} } `"kg" cdot "m/s"} {}

(b) The wavelength of microwave photons is large, so the momentum they carry is very small.

40.

(a) 13.3 μm

(b) 9.38×10-29.38×10-2 eV

42.

(a) 2.65×1028kgm/s2.65×1028kgm/s size 12{2 "." "65" times "10" rSup { size 8{ - "28"} } `"kg" cdot "m/s"} {}

(b) 291 m/s

(c) electron 3.86×1026 J3.86×1026 J size 12{3 "." "86" times "10" rSup { size 8{ - "26"} } " J"} {}, photon 7.96×1020 J7.96×1020 J size 12{7 "." "96" times "10" rSup { size 8{ - "20"} } " J"} {}, ratio 2.06×1062.06×106 size 12{2 "." "06" times "10" rSup { size 8{6} } } {}

44.

(a) 1.32×1013 m1.32×1013 m size 12{1 "." "32" times "10" rSup { size 8{ - "13"} } " m"} {}

(b) 9.39 MeV

(c) 4.70×102 MeV4.70×102 MeV size 12{4 "." "70" times "10" rSup { size 8{ - 2} } " MeV"} {}

46.

E=γmc2E=γmc2mc2 and P=γmuP=γmu, so

EP = γmc2 γmu = c2 u . EP = γmc2 γmu = c2 u .

As the mass of particle approaches zero, its velocity uu will approach cc, so that the ratio of energy to momentum in this limit is

limm→0 E P = c2 c = c limm→0 E P = c2 c = c

which is consistent with the equation for photon energy.

48.

(a) 3 . 00 × 10 6 W 3 . 00 × 10 6 W size 12{3 "." "00" times "10" rSup { size 8{6} } " W"} {}

(b) Headlights are way too bright.

(c) Force is too large.

49.

7.28 × 10 –4 m 7.28 × 10 –4 m size 12{7 "." "28" times "10" rSup { size 8{–4} } " m"} {}

51.

6.62 × 10 7 m/s 6.62 × 10 7 m/s size 12{6 "." "62" times "10" rSup { size 8{7} } " m/s"} {}

53.

1.32 × 10 –13 m 1.32 × 10 –13 m size 12{6 "." "62" times "10" rSup { size 8{7} } " m/s"} {}

55.

(a) 6.62×107 m/s6.62×107 m/s size 12{6 "." "62" times "10" rSup { size 8{7} } " m/s"} {}

(b) 22.9 MeV22.9 MeV

57.

15.1 keV

59.

(a) 5.29 fm

(b) 4.70×1012 J4.70×1012 J size 12{4 "." "70" times "10" rSup { size 8{ - "12"} } " J"} {}

(c) 29.4 MV

61.

(a) 7.28×1012 m/s7.28×1012 m/s size 12{7 "." "28" times "10" rSup { size 8{"12"} } " m/s"} {}

(b) This is thousands of times the speed of light (an impossibility).

(c) The assumption that the electron is non-relativistic is unreasonable at this wavelength.

62.

(a) 57.9 m/s

(b) 9.55×109 eV9.55×109 eV size 12{9 "." "55" times "10" rSup { size 8{ - 9} } " eV"} {}

(c) From Table 29.1, we see that typical molecular binding energies range from about 1eV to 10 eV, therefore the result in part (b) is approximately 9 orders of magnitude smaller than typical molecular binding energies.

64.

29 nm,

290 times greater

66.

1 . 10 × 10 13 eV 1 . 10 × 10 13 eV size 12{1 "." "10" times "10" rSup { size 8{ - "13"} } " eV"} {}

68.

3 . 3 × 10 22 s 3 . 3 × 10 22 s size 12{3 "." 3 times "10" rSup { size 8{ - "22"} } " s"} {}

70.

2.66 × 10 46 kg 2.66 × 10 46 kg size 12{2 "." "66" times "10" rSup { size 8{ - "46"} } " kg"} {}

72.

0.395 nm

74.

(a) 1.3 × 10 19 J 1.3 × 10 19 J size 12{1 "." "33" times "10" rSup { size 8{ - "19"} } " J"} {}

(b) 2 . 1 × 10 23 2 . 1 × 10 23 size 12{2 "." 1 times "10" rSup { size 8{"23"} } } {}

(c) 1 . 4 × 10 2 s 1 . 4 × 10 2 s size 12{1 "." 4 times "10" rSup { size 8{2} } " s"} {}

76.

(a) 3.35×105 J3.35×105 J size 12{3 "." "35" times "10" rSup { size 8{5} } " J"} {}

(b) 1.12×10–3 kgm/s1.12×10–3 kgm/s size 12{1 "." "12" times "10" rSup { size 8{"–3"} } " kg" cdot "m/s"} {}

(c) 1.12×10–3 m/s1.12×10–3 m/s size 12{1 "." "12" times "10" rSup { size 8{"–3"} } " m/s"} {}

(d) 6.23×10–7 J6.23×10–7 J size 12{6 "." "23" times "10" rSup { size 8{"–7"} } " J"} {}

78.

(a) 1.06×1031.06×103 size 12{1 "." "07" times "10" rSup { size 8{3} } } {}

(b) 5.33×1016kgm/s5.33×1016kgm/s size 12{5 "." "34" times "10" rSup { size 8{ - "16"} } `"kg" cdot "m/s"} {}

(c) 1.24×1018m1.24×1018m size 12{1 "." "24" times "10" rSup { size 8{ - "18"} } `m} {}

80.

(a) 1 . 62 × 10 3 m/s 1 . 62 × 10 3 m/s size 12{1 "." "62" times "10" rSup { size 8{3} } " m/s"} {}

(b) 4 . 42 × 10 19 J 4 . 42 × 10 19 J size 12{4 "." "41" times "10" rSup { size 8{ - "19"} } " J"} {} for photon, 1 . 19 × 10 24 J 1 . 19 × 10 24 J size 12{1 "." "19" times "10" rSup { size 8{ - "24"} } `J} {} for electron, photon energy is 3 . 71 × 10 5 3 . 71 × 10 5 size 12{3 "." "71" times "10" rSup { size 8{5} } } {} times greater

(c) The light is easier to make because 450-nm light is blue light and therefore easy to make. Creating electrons with 7.43 μeV 7.43 μeV size 12{7 "." "43"`"μeV"} {} of energy would not be difficult, but would require a vacuum.

81.

(a) 2 . 30 × 10 6 m 2 . 30 × 10 6 m size 12{2 "." "30" times "10" rSup { size 8{ - 6} } " m"} {}

(b) 3 . 20 × 10 12 m 3 . 20 × 10 12 m size 12{3 "." "20" times "10" rSup { size 8{ - "12"} } `m} {}

83.

3 . 69 × 10 4 ºC 3 . 69 × 10 4 ºC size 12{3 "." "69" times "10" rSup { size 8{ - 4} } `°C} {}

85.

(a) 2.00 kJ

(b) 1.33×105kgm/s1.33×105kgm/s size 12{1 "." "33" times "10" rSup { size 8{ - 5} } `"kg" cdot "m/s"} {}

(c) 1.33×105 N1.33×105 N size 12{1 "." "33" times "10" rSup { size 8{ - 5} } " N"} {}

(d) yes

Test Prep for AP® Courses

1.

(b)

3.

(c)

5.

(b)

7.

(c)

9.

(c)

11.

(a)

13.

(a)

15.

(c)

17.

(d)

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
Citation information

© Mar 3, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.