Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
College Physics for AP® Courses

Chapter 30

College Physics for AP® CoursesChapter 30

Problems & Exercises

1.

1 . 84 × 10 3 1 . 84 × 10 3 size 12{1 "." "84" times "10" rSup { size 8{3} } } {}

3.

50 km

4.

6 × 10 20 kg/m 3 6 × 10 20 kg/m 3 size 12{1 "." "93" times "10" rSup { size 8{"25"} } `"kg/m" rSup { size 8{3} } } {}

6.

(a) 10.0 μm 10.0 μm size 12{"10" "." 0" μm"} {}

(b) It isn’t hard to make one of approximately this size. It would be harder to make it exactly 10.0 μm 10.0 μm size 12{"10" "." 0" μm"} {} .

7.

1λ=R1nf21ni2λ=1R(ninf)2ni2nf2;ni=2,nf=1,1λ=R1nf21ni2λ=1R(ninf)2ni2nf2;ni=2,nf=1, size 12{ { {1} over {λ} } =R left ( { {1} over {n rSub { size 8{f} } rSup { size 8{2} } } } - { {1} over {n rSub { size 8{i} } rSup { size 8{2} } } } right ) drarrow λ= { {1} over {R} } left [ { { \( n rSub { size 8{i} } cdot n rSub { size 8{f} } \) rSup { size 8{2} } } over {n rSub { size 8{i} } rSup { size 8{2} } - n rSub { size 8{f} } rSup { size 8{2} } } } right ]; n rSub { size 8{i} } =2" , "n rSub { size 8{f} } =1" ,"} {} so that

λ = m 1.097 × 10 7 ( 2 × 1 ) 2 2 2 1 2 =1.22×107 m=122 nm λ = m 1.097 × 10 7 ( 2 × 1 ) 2 2 2 1 2 =1.22×107 m=122 nm size 12{λ= left ( { {m} over {1 "." "097" times "10" rSup { size 8{7} } } } right ) left [ { { \( 2 "." 1 \) rSup { size 8{2} } } over {4 - 1} } right ]=1 "." "22" times "10" rSup { size 8{ - 7} } " m"="122"" nm"} {} , which is UV radiation.

9.

a B = h 2 4π 2 m e kZq e 2 = ( 6.626 × 10 34 J·s ) 2 4π 2 ( 9.109 × 10 31 kg ) ( 8.988 × 10 9 N · m 2 / C 2 ) ( 1 ) ( 1.602 × 10 19 C ) 2 = 0.529 × 10 10 m a B = h 2 4π 2 m e kZq e 2 = ( 6.626 × 10 34 J·s ) 2 4π 2 ( 9.109 × 10 31 kg ) ( 8.988 × 10 9 N · m 2 / C 2 ) ( 1 ) ( 1.602 × 10 19 C ) 2 = 0.529 × 10 10 m

11.

0.850 eV

13.

2.12 × 10 –10 m 2.12 × 10 –10 m size 12{2 "." "12" times "10" rSup { size 8{"-10"} } " m"} {}

15.

365 nm

It is in the ultraviolet.

17.

No overlap

365 nm

122 nm

19.

7

21.

(a) 2

(b) 54.4 eV

23.

kZqe2rn2=meV2rn ,kZqe2rn2=meV2rn , so that rn=kZqe2meV2=kZqe2me1V2.rn=kZqe2meV2=kZqe2me1V2. From the equation mevrn=nh2π ,mevrn=nh2π , we can substitute for the velocity, giving: rn=kZqe2me4π2me2rn2n2h2rn=kZqe2me4π2me2rn2n2h2 so that rn=n2Zh24π2mekqe2=n2ZaB ,rn=n2Zh24π2mekqe2=n2ZaB , where aB=h22mekqe2aB=h22mekqe2.

25.

(a) 0.248× 10 −10 m0.248× 10 −10 m

(b) 50.0 keV

(c) The photon energy is simply the applied voltage times the electron charge, so the value of the voltage in volts is the same as the value of the energy in electron volts.

27.

(a) 100×103eV100×103eV size 12{"100" times "10" rSup { size 8{3} } " eV"} {}, 1.60×1014J1.60×1014J size 12{1 "." "60" times "10" rSup { size 8{ - "14"} } `J} {}

(b) 0.124×1010 m0.124×1010 m size 12{1 "." "24" times "10" rSup { size 8{ - "11"} } " m"} {}

29.

(a) 8.00 keV

(b) 9.48 keV

30.

(a) 1.96 eV

(b) ( 1240 eV·nm ) / ( 1 . 96 eV ) = 633 nm ( 1240 eV·nm ) / ( 1 . 96 eV ) = 633 nm size 12{ \( "1240 eV·nm" \) / \( 1 "." "96 eV" \) =" 633 nm"} {}

(c) 60.0 nm

32.

693 nm

34.

(a) 590 nm

(b) ( 1240 eV·nm ) / ( 1 . 17 eV ) = 1.06 μm ( 1240 eV·nm ) / ( 1 . 17 eV ) = 1.06 μm size 12{ \( "1240 eV·nm" \) / \( 1 "." "96 eV" \) =" 633 nm"} {}

35.

l=4, 3l=4, 3 are possible since l<nl<n size 12{l<n} {} and mllmll size 12{ lline m rSub { size 8{l} } rline {underline {<}} l} {}.

37.

n=4l=3, 2, 1, 0ml=±3,±2, ±1, 0n=4l=3, 2, 1, 0ml=±3,±2, ±1, 0 are possible.

39.

(a) 1.49×1034 Js1.49×1034 Js size 12{1 "." "49" times "10" rSup { size 8{ - "34"} } " J" cdot s} {}

(b) 1.06×1034 Js1.06×1034 Js size 12{1 "." "06" times "10" rSup { size 8{ - "34"} } " J" cdot s} {}

41.

(a) 3.66×1034 Js3.66×1034 Js size 12{3 "." "66" times "10" rSup { size 8{ - "34"} } " J" cdot s} {}

(b) s=9.13×1035 Jss=9.13×1035 Js size 12{s=9 "." "14" times "10" rSup { size 8{ - "35"} } " J" cdot s} {}

(c) LS=123/4=4LS=123/4=4 size 12{ { {L} over {S} } = { { sqrt {"12"} } over { sqrt {3/4} } } =4} {}

43.

θ = 54.7º, 125.3º θ = 54.7º, 125.3º

44.

(a) 32. (b) 2 in s, 6 in p, 10 in d,2 in s, 6 in p, 10 in d, and 14 in ff size 12{f} {}, for a total of 32.

46.

(a) 2

(b) 3d93d9 size 12{3d rSup { size 8{9} } } {}

48.

(b) nl nl is violated,

(c) cannot have 3 electrons in s s subshell since 3 > ( 2 l + 1 ) = 2 3 > ( 2 l + 1 ) = 2

(d) cannot have 7 electrons in p p subshell since 7 > ( 2 l + 1 ) = 2 ( 2 + 1 ) = 6 7 > ( 2 l + 1 ) = 2 ( 2 + 1 ) = 6

50.

(a) The number of different values of mlml size 12{m rSub { size 8{l} } } {} is ±l,±(l1),...,0±l,±(l1),...,0 for each l>0l>0 size 12{l>0} {} and one for l=0(2l+1).l=0(2l+1). size 12{l=0 drarrow \( 2l+1 \) "." } {} Also an overall factor of 2 since each mlml size 12{m rSub { size 8{l} } } {} can have msms size 12{m rSub { size 8{s} } } {} equal to either +1/2+1/2 size 12{+1/2} {} or 1/22(2l+1)1/22(2l+1) size 12{ - 1/2 drarrow 2 \( 2l+1 \) } {}.

(b) for each value of ll size 12{l} {}, you get 2(2l+1)2(2l+1) size 12{2 \( 2l+1 \) } {}

=0, 1, 2, ...,(n–1)2(2)(0)+1+(2)(1)+1+....+(2)(n1)+1= 21+3+...+(2n3)+(2n1) n terms =0, 1, 2, ...,(n–1)2(2)(0)+1+(2)(1)+1+....+(2)(n1)+1= 21+3+...+(2n3)+(2n1) n terms size 12{ {}=0, 1," 2, " "." "." "." ", " \( "n–1" \) drarrow 2 left lbrace left [ \( 2 \) \( 0 \) +1 right ]+ left [ \( 2 \) \( 1 \) +1 right ]+ "." "." "." "." + left [ \( 2 \) \( n - 1 \) +1 right ] right rbrace = {2 left [1+3+ "." "." "." + \( 2n - 3 \) + \( 2n - 1 \) right ]} underbrace { size 8{n" terms"} } } {} to see that the expression in the box is =n2,=n2, imagine taking (n1)(n1) size 12{ \( n - 1 \) } {} from the last term and adding it to first term =21+(n–1)+3+...+(2n3)+(2n1)(n1)=2n+3+....+(2n3)+n.=21+(n–1)+3+...+(2n3)+(2n1)(n1)=2n+3+....+(2n3)+n. size 12{ {}=2 left [1+ \( n"–1" \) +3+ "." "." "." + \( 2n - 3 \) + \( 2n - 1 \) – \( n - 1 \) right ]=2 left [n+3+ "." "." "." "." + \( 2n - 3 \) +n right ] "." } {} Now take (n3)(n3) size 12{ \( n - 3 \) } {} from penultimate term and add to the second term 2 n+n+...+n+n n terms =2n22 n+n+...+n+n n terms =2n2 size 12{2 { left [n+n+ "." "." "." +n+n right ]} underbrace { size 8{n" terms"} } =2n rSup { size 8{2} } } {}.

52.

The electric force on the electron is up (toward the positively charged plate). The magnetic force is down (by the RHR).

54.

401 nm

56.

(a) 6.54×1016 kg6.54×1016 kg size 12{6 "." "53" times "10" rSup { size 8{ - "16"} } " kg"} {}

(b) 5.54×107 m5.54×107 m size 12{5 "." "53" times "10" rSup { size 8{ - 7} } " m"} {}

58.

1 . 76 × 10 11 C/kg 1 . 76 × 10 11 C/kg size 12{1 "." "76" times "10" rSup { size 8{"11"} } " C/kg"} {} , which agrees with the known value of 1 . 759 × 10 11 C/kg 1 . 759 × 10 11 C/kg size 12{1 "." "759" times "10" rSup { size 8{"11"} } " C/kg"} {} to within the precision of the measurement

60.

(a) 2.78 fm

(b) 0.37 of the nuclear radius.

62.

(a) 1.34×10231.34×1023 size 12{1 "." "34" times "10" rSup { size 8{"23"} } } {}

(b) 2.52 MW

64.

(a) 6.42 eV

(b) 7.27×1020 J/molecule7.27×1020 J/molecule size 12{6 "." "75" times "10" rSup { size 8{ - "20"} } " J/molecule"} {}

(c) 0.454 eV, 14.1 times less than a single UV photon. Therefore, each photon will evaporate approximately 14 molecules of tissue. This gives the surgeon a rather precise method of removing corneal tissue from the surface of the eye.

66.

91.18 nm to 91.22 nm

68.

(a) 1.24×1011 V1.24×1011 V size 12{1 "." "24" times "10" rSup { size 8{"11"} } " V"} {}

(b) The voltage is extremely large compared with any practical value.

(c) The assumption of such a short wavelength by this method is unreasonable.

Test Prep for AP® Courses

1.

(a), (d)

3.

(a)

5.

(a)

7.

(b)

9.

(a)

11.

(d)

13.

(d)

15.

(a), (c)

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
Citation information

© Mar 3, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.