Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
College Physics for AP® Courses

Chapter 31

College Physics for AP® CoursesChapter 31

Problems & Exercises

1.

1.67 × 10 4 1.67 × 10 4

5.

m = ρV = ρd 3 a = m ρ 1/3 = 2.3 × 10 17 kg 1000 kg/m 3 1 3 = 61 × 10 3 m = 61 km m = ρV = ρd 3 a = m ρ 1/3 = 2.3 × 10 17 kg 1000 kg/m 3 1 3 = 61 × 10 3 m = 61 km

7.

1.9 fm 1.9 fm size 12{1 "." 9" fm"} {}

9.

(a) 4.6 fm4.6 fm size 12{4 "." "6 fm"} {}

(b) 0.61 to 10.61 to 1 size 12{0 "." "61 to 1"} {}

11.

85 . 4 to 1 85 . 4 to 1 size 12{"85" "." "4 to 1"} {}

13.

12.4 GeV 12.4 GeV size 12{"12" "." "4 GeV"} {}

15.

19.3 to 1

17.

1 3 H 2 2 3 He 1 + β + ν ¯ e 1 3 H 2 2 3 He 1 + β + ν ¯ e

19.

25 50 M 25 24 50 Cr 26 + β + + ν e 25 50 M 25 24 50 Cr 26 + β + + ν e size 12{"" lSub { size 8{"25"} } lSup { size 8{"50"} } M rSub { size 8{"25"} } rightarrow "" lSub { size 8{"24"} } lSup { size 8{"50"} } "Cr" rSub { size 8{"20"} } +β rSup { size 8{+{}} } +v rSub { size 8{e} } } {}

21.

4 7 Be 3 + e 3 7 Li 4 + ν e 4 7 Be 3 + e 3 7 Li 4 + ν e size 12{"" lSub { size 8{4} } lSup { size 8{7} } "Be" rSub { size 8{3} } +e rSup { size 8{ - {}} } rightarrow "" lSub { size 8{3} } lSup { size 8{7} } "Li" rSub { size 8{4} } +v rSub { size 8{e} } } {}

23.

84 210 Po 126 82 206 Pb 124 + 2 4 He 2 84 210 Po 126 82 206 Pb 124 + 2 4 He 2 size 12{"" lSub { size 8{"84"} } lSup { size 8{"210"} } "Pb" rSub { size 8{"126"} } rightarrow "" lSub { size 8{"82"} } lSup { size 8{"206"} } "Pb" rSub { size 8{"124"} } +"" lSub { size 8{2} } lSup { size 8{4} } "He" rSub { size 8{2} } } {}

25.

55 137 Cs 82 56 137 Ba 81 + β + ν ¯ e 55 137 Cs 82 56 137 Ba 81 + β + ν ¯ e size 12{"" lSub { size 8{"55"} } lSup { size 8{"137"} } "Cs" rSub { size 8{"82"} } rightarrow "" lSub { size 8{"56"} } lSup { size 8{"137"} } "Ba" rSub { size 8{"81"} } +β rSup { size 8{ - {}} } + {overline {v rSub { size 8{e} } }} } {}

27.

90 232 Th 142 88 228 Ra 140 + 2 4 He 2 90 232 Th 142 88 228 Ra 140 + 2 4 He 2 size 12{"" lSub { size 8{"90"} } lSup { size 8{"232"} } "Th" rSub { size 8{"142"} } rightarrow "" lSub { size 8{"88"} } lSup { size 8{"228"} } "Ra" rSub { size 8{"140"} } +"" lSub { size 8{2} } lSup { size 8{4} } "He" rSub { size 8{2} } } {}

29.

(a) charge: +1+1=0; electron family number:+1+1=0; A: 0+0=0charge: +1+1=0; electron family number:+1+1=0; A: 0+0=0

(b) 0.511 MeV

(c) The two γγ size 12{γ} {} rays must travel in exactly opposite directions in order to conserve momentum, since initially there is zero momentum if the center of mass is initially at rest.

31.

Z = Z + 1 1; A = A ; efn : 0 = + 1 + 1 Z = Z + 1 1; A = A ; efn : 0 = + 1 + 1

33.

Z - 1 = Z 1; A = A; efn : + 1 = + 1 Z - 1 = Z 1; A = A; efn : + 1 = + 1 alignl { stack { size 12{Z+1=Z - 1" before/after; captured "e rSup { size 8{ - 1} } " is last term rhs;"} {} # A=A" ; efn : " left (+1 right )= left (+1 right ) {} } } {}

35.

(a) 88226Ra138 86222 Rn136+ 24 He2 88226Ra138 86222 Rn136+ 24 He2

(b) 4.87 MeV

37.

(a) np+β+ν¯enp+β+ν¯e

(b) ) 0.783 MeV

39.

1.82 MeV

41.

(a) 4.274 MeV

(b) 1.927×1051.927×105 size 12{1 "." "927" times "10" rSup { size 8{ - 5} } u} {}

(c) Since U-238 is a slowly decaying substance, only a very small number of nuclei decay on human timescales; therefore, although those nuclei that decay lose a noticeable fraction of their mass, the change in the total mass of the sample is not detectable for a macroscopic sample.

43.

(a) 815O7+ e 715N8+νe815O7+ e 715N8+νe size 12{"" lSub { size 8{8} } lSup { size 8{"15"} } O rSub { size 8{7} } +e rSup { size 8{ - {}} } rightarrow "" lSub { size 8{7} } lSup { size 8{"15"} } N rSub { size 8{8} } +v rSub { size 8{e} } } {}

(b) 2.754 MeV

44.

57,300 y

46.

(a) 0.988 Ci

(b) The half-life of 226Ra226Ra size 12{"" lSup { size 8{"226"} } "Ra"} {} is now better known.

48.

1.22 × 10 3 Bq 1.22 × 10 3 Bq

50.

(a) 16.0 mg

(b) 0.0114%

52.

1.48 × 10 17 y 1.48 × 10 17 y size 12{ {underline {1 "." "48" times "10" rSup { size 8{"17"} } y}} } {}

54.

5.6 × 10 4 y 5.6 × 10 4 y size 12{ {underline {5 "." 6 times "10" rSup { size 8{4} } y}} } {}

56.

2.71 y

58.

(a) 1.56 mg

(b) 11.3 Ci

60.

(a) 1.23×1031.23×103 size 12{ {underline {1 "." "23" times "10" rSup { size 8{ - 3} } }} } {}

(b) Only part of the emitted radiation goes in the direction of the detector. Only a fraction of that causes a response in the detector. Some of the emitted radiation (mostly αα size 12{α} {} particles) is observed within the source. Some is absorbed within the source, some is absorbed by the detector, and some does not penetrate the detector.

62.

(a) 1.68 × 10 5 Ci 1.68× 10 5 Ci

(b) 8.65 × 10 10 J 8.65× 10 10 J

(c) $ 2.9 × 10 3 $2.9× 10 3

64.

(a) 6.97 × 10 15 Bq 6.97× 10 15 Bq

(b) 6.24 kW

(c) 5.67 kW

68.

(a) 84.5 Ci

(b) An extremely large activity, many orders of magnitude greater than permitted for home use.

(c) The assumption of 1.00 μA 1.00μA is unreasonably large. Other methods can detect much smaller decay rates.

69.

1.112 MeV, consistent with graph

71.

7.848 MeV, consistent with graph

73.

(a) 7.680 MeV, consistent with graph

(b) 7.520 MeV, consistent with graph. Not significantly different from value for 12C12C, but sufficiently lower to allow decay into another nuclide that is more tightly bound.

75.

(a) 1.46×108u1.46×108u vs. 1.007825 u for 1H1H

(b) 0.000549 u

(c) 2.66×1052.66×105 size 12{2 "." "66" times "10" rSup { size 8{ - 5} } } {}

76.

(a) –9.315 MeV–9.315 MeV

(b) The negative binding energy implies an unbound system.

(c) This assumption that it is two bound neutrons is incorrect.

78.

22.8 cm

79.

(a) 92235 U 143 90 231 Th 141 + 2 4 He 2 92235 U 143 90 231 Th 141 + 2 4 He 2

(b) 4.679 MeV

(c) 4.599 MeV

81.

a) 2.4 × 10 8 2.4 × 10 8 u

(b) The greatest known atomic masses are about 260. This result found in (a) is extremely large.

(c) The assumed radius is much too large to be reasonable.

82.

(a) –1.805 MeV–1.805 MeV

(b) Negative energy implies energy input is necessary and the reaction cannot be spontaneous.

(c) Although all conversation laws are obeyed, energy must be supplied, so the assumption of spontaneous decay is incorrect.

Test Prep for AP® Courses

1.

(c)

3.

(a)

5.

When 95 241 Am 95 241 Am MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0baaSqaaiaaiMdacaaI1aaabaGaaGOmaiaaisdacaaIXaaaaOGaaeyqaiaab2gaaaa@3B96@ undergoes α decay, it loses 2 neutrons and 2 protons. The resulting nucleus is therefore 93 237 Np 93 237 Np MathType@MTEF@5@5@+=feaagyart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0baaSqaaiaaiMdacaaIZaaabaGaaGOmaiaaiodacaaI3aaaaOGaaeOtaiaabchaaaa@3BA9@ .

7.

During this process, the nucleus emits a particle with -1 charge. In order for the overall charge of the system to remain constant, the charge of the nucleus must therefore increase by +1.

9.
  1. No. Nucleon number is conserved (238 = 234 + 4), but the atomic number or charge is NOT conserved (92 ≠ 88+2).
  2. Yes. Nucleon number is conserved (223 = 209 + 14), and atomic number is conserved (88 = 82 + 6).
  3. Yes. Nucleon number is conserved (14 = 14), and charge is conserved if the electron’s charge is properly counted (6 = 7 + (-1)).
  4. No. Nucleon number is not conserved (24 ≠ 23). The positron released counts as a charge to conserve charge, but it doesn’t count as a nucleon.
11.

This must be alpha decay since 4 nucleons (2 positive charges) are lost from the parent nucleus. The number remaining is found from:

N( t )= N 0 e( 0.693t t 1 2 )=3.4× 10 17 e( ( 0.693 )( 0.035 ) 0.00173 ) N( t )= N 0 e( 0.693t t 1 2 )=3.4× 10 17 e( ( 0.693 )( 0.035 ) 0.00173 ) MathType@MTEF@5@5@+=feaagyart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOtamaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iaab6eadaWgaaWcbaGaaGimaaqabaGccaWGLbWaaeWaaeaadaWcaaqaaiabgkHiTiaaicdacaGGUaGaaGOnaiaaiMdacaaIZaGaamiDaaqaamaalaaabaGaamiDamaaBaaaleaacaaIXaaabeaaaOqaaiaaikdaaaaaaaGaayjkaiaawMcaaiabg2da9iaaiodacaGGUaGaaGinaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaG4naaaakiaadwgadaqadaqaamaalaaabaGaeyOeI0YaaeWaaeaacaaIWaGaaiOlaiaaiAdacaaI5aGaaG4maaGaayjkaiaawMcaamaabmaabaGaaGimaiaac6cacaaIWaGaaG4maiaaiwdaaiaawIcacaGLPaaaaeaacaaIWaGaaiOlaiaaicdacaaIWaGaaGymaiaaiEdacaaIZaaaaaGaayjkaiaawMcaaaaa@6233@

N( t )=4.1× 10 11 N( t )=4.1× 10 11 MathType@MTEF@5@5@+=feaagyart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOtamaabmaabaGaamiDaaGaayjkaiaawMcaaiabg2da9iaaisdacaGGUaGaaGymaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacaaIXaGaaGymaaaaaaa@41A6@ nuclei

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
Citation information

© Mar 3, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.