Skip to Content
OpenStax Logo
Buy book
  1. Preface
  2. 1 Introduction: The Nature of Science and Physics
    1. Connection for AP® Courses
    2. 1.1 Physics: An Introduction
    3. 1.2 Physical Quantities and Units
    4. 1.3 Accuracy, Precision, and Significant Figures
    5. 1.4 Approximation
    6. Glossary
    7. Section Summary
    8. Conceptual Questions
    9. Problems & Exercises
  3. 2 Kinematics
    1. Connection for AP® Courses
    2. 2.1 Displacement
    3. 2.2 Vectors, Scalars, and Coordinate Systems
    4. 2.3 Time, Velocity, and Speed
    5. 2.4 Acceleration
    6. 2.5 Motion Equations for Constant Acceleration in One Dimension
    7. 2.6 Problem-Solving Basics for One Dimensional Kinematics
    8. 2.7 Falling Objects
    9. 2.8 Graphical Analysis of One Dimensional Motion
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
    14. Test Prep for AP® Courses
  4. 3 Two-Dimensional Kinematics
    1. Connection for AP® Courses
    2. 3.1 Kinematics in Two Dimensions: An Introduction
    3. 3.2 Vector Addition and Subtraction: Graphical Methods
    4. 3.3 Vector Addition and Subtraction: Analytical Methods
    5. 3.4 Projectile Motion
    6. 3.5 Addition of Velocities
    7. Glossary
    8. Section Summary
    9. Conceptual Questions
    10. Problems & Exercises
    11. Test Prep for AP® Courses
  5. 4 Dynamics: Force and Newton's Laws of Motion
    1. Connection for AP® Courses
    2. 4.1 Development of Force Concept
    3. 4.2 Newton's First Law of Motion: Inertia
    4. 4.3 Newton's Second Law of Motion: Concept of a System
    5. 4.4 Newton's Third Law of Motion: Symmetry in Forces
    6. 4.5 Normal, Tension, and Other Examples of Force
    7. 4.6 Problem-Solving Strategies
    8. 4.7 Further Applications of Newton's Laws of Motion
    9. 4.8 Extended Topic: The Four Basic Forces—An Introduction
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
    14. Test Prep for AP® Courses
  6. 5 Further Applications of Newton's Laws: Friction, Drag, and Elasticity
    1. Connection for AP® Courses
    2. 5.1 Friction
    3. 5.2 Drag Forces
    4. 5.3 Elasticity: Stress and Strain
    5. Glossary
    6. Section Summary
    7. Conceptual Questions
    8. Problems & Exercises
    9. Test Prep for AP® Courses
  7. 6 Gravitation and Uniform Circular Motion
    1. Connection for AP® Courses
    2. 6.1 Rotation Angle and Angular Velocity
    3. 6.2 Centripetal Acceleration
    4. 6.3 Centripetal Force
    5. 6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
    6. 6.5 Newton's Universal Law of Gravitation
    7. 6.6 Satellites and Kepler's Laws: An Argument for Simplicity
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  8. 7 Work, Energy, and Energy Resources
    1. Connection for AP® Courses
    2. 7.1 Work: The Scientific Definition
    3. 7.2 Kinetic Energy and the Work-Energy Theorem
    4. 7.3 Gravitational Potential Energy
    5. 7.4 Conservative Forces and Potential Energy
    6. 7.5 Nonconservative Forces
    7. 7.6 Conservation of Energy
    8. 7.7 Power
    9. 7.8 Work, Energy, and Power in Humans
    10. 7.9 World Energy Use
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
    15. Test Prep for AP® Courses
  9. 8 Linear Momentum and Collisions
    1. Connection for AP® courses
    2. 8.1 Linear Momentum and Force
    3. 8.2 Impulse
    4. 8.3 Conservation of Momentum
    5. 8.4 Elastic Collisions in One Dimension
    6. 8.5 Inelastic Collisions in One Dimension
    7. 8.6 Collisions of Point Masses in Two Dimensions
    8. 8.7 Introduction to Rocket Propulsion
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  10. 9 Statics and Torque
    1. Connection for AP® Courses
    2. 9.1 The First Condition for Equilibrium
    3. 9.2 The Second Condition for Equilibrium
    4. 9.3 Stability
    5. 9.4 Applications of Statics, Including Problem-Solving Strategies
    6. 9.5 Simple Machines
    7. 9.6 Forces and Torques in Muscles and Joints
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  11. 10 Rotational Motion and Angular Momentum
    1. Connection for AP® Courses
    2. 10.1 Angular Acceleration
    3. 10.2 Kinematics of Rotational Motion
    4. 10.3 Dynamics of Rotational Motion: Rotational Inertia
    5. 10.4 Rotational Kinetic Energy: Work and Energy Revisited
    6. 10.5 Angular Momentum and Its Conservation
    7. 10.6 Collisions of Extended Bodies in Two Dimensions
    8. 10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  12. 11 Fluid Statics
    1. Connection for AP® Courses
    2. 11.1 What Is a Fluid?
    3. 11.2 Density
    4. 11.3 Pressure
    5. 11.4 Variation of Pressure with Depth in a Fluid
    6. 11.5 Pascal’s Principle
    7. 11.6 Gauge Pressure, Absolute Pressure, and Pressure Measurement
    8. 11.7 Archimedes’ Principle
    9. 11.8 Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
    10. 11.9 Pressures in the Body
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
    15. Test Prep for AP® Courses
  13. 12 Fluid Dynamics and Its Biological and Medical Applications
    1. Connection for AP® Courses
    2. 12.1 Flow Rate and Its Relation to Velocity
    3. 12.2 Bernoulli’s Equation
    4. 12.3 The Most General Applications of Bernoulli’s Equation
    5. 12.4 Viscosity and Laminar Flow; Poiseuille’s Law
    6. 12.5 The Onset of Turbulence
    7. 12.6 Motion of an Object in a Viscous Fluid
    8. 12.7 Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  14. 13 Temperature, Kinetic Theory, and the Gas Laws
    1. Connection for AP® Courses
    2. 13.1 Temperature
    3. 13.2 Thermal Expansion of Solids and Liquids
    4. 13.3 The Ideal Gas Law
    5. 13.4 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature
    6. 13.5 Phase Changes
    7. 13.6 Humidity, Evaporation, and Boiling
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  15. 14 Heat and Heat Transfer Methods
    1. Connection for AP® Courses
    2. 14.1 Heat
    3. 14.2 Temperature Change and Heat Capacity
    4. 14.3 Phase Change and Latent Heat
    5. 14.4 Heat Transfer Methods
    6. 14.5 Conduction
    7. 14.6 Convection
    8. 14.7 Radiation
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  16. 15 Thermodynamics
    1. Connection for AP® Courses
    2. 15.1 The First Law of Thermodynamics
    3. 15.2 The First Law of Thermodynamics and Some Simple Processes
    4. 15.3 Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
    5. 15.4 Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
    6. 15.5 Applications of Thermodynamics: Heat Pumps and Refrigerators
    7. 15.6 Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
    8. 15.7 Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  17. 16 Oscillatory Motion and Waves
    1. Connection for AP® Courses
    2. 16.1 Hooke’s Law: Stress and Strain Revisited
    3. 16.2 Period and Frequency in Oscillations
    4. 16.3 Simple Harmonic Motion: A Special Periodic Motion
    5. 16.4 The Simple Pendulum
    6. 16.5 Energy and the Simple Harmonic Oscillator
    7. 16.6 Uniform Circular Motion and Simple Harmonic Motion
    8. 16.7 Damped Harmonic Motion
    9. 16.8 Forced Oscillations and Resonance
    10. 16.9 Waves
    11. 16.10 Superposition and Interference
    12. 16.11 Energy in Waves: Intensity
    13. Glossary
    14. Section Summary
    15. Conceptual Questions
    16. Problems & Exercises
    17. Test Prep for AP® Courses
  18. 17 Physics of Hearing
    1. Connection for AP® Courses
    2. 17.1 Sound
    3. 17.2 Speed of Sound, Frequency, and Wavelength
    4. 17.3 Sound Intensity and Sound Level
    5. 17.4 Doppler Effect and Sonic Booms
    6. 17.5 Sound Interference and Resonance: Standing Waves in Air Columns
    7. 17.6 Hearing
    8. 17.7 Ultrasound
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  19. 18 Electric Charge and Electric Field
    1. Connection for AP® Courses
    2. 18.1 Static Electricity and Charge: Conservation of Charge
    3. 18.2 Conductors and Insulators
    4. 18.3 Conductors and Electric Fields in Static Equilibrium
    5. 18.4 Coulomb’s Law
    6. 18.5 Electric Field: Concept of a Field Revisited
    7. 18.6 Electric Field Lines: Multiple Charges
    8. 18.7 Electric Forces in Biology
    9. 18.8 Applications of Electrostatics
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
    14. Test Prep for AP® Courses
  20. 19 Electric Potential and Electric Field
    1. Connection for AP® Courses
    2. 19.1 Electric Potential Energy: Potential Difference
    3. 19.2 Electric Potential in a Uniform Electric Field
    4. 19.3 Electrical Potential Due to a Point Charge
    5. 19.4 Equipotential Lines
    6. 19.5 Capacitors and Dielectrics
    7. 19.6 Capacitors in Series and Parallel
    8. 19.7 Energy Stored in Capacitors
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  21. 20 Electric Current, Resistance, and Ohm's Law
    1. Connection for AP® Courses
    2. 20.1 Current
    3. 20.2 Ohm’s Law: Resistance and Simple Circuits
    4. 20.3 Resistance and Resistivity
    5. 20.4 Electric Power and Energy
    6. 20.5 Alternating Current versus Direct Current
    7. 20.6 Electric Hazards and the Human Body
    8. 20.7 Nerve Conduction–Electrocardiograms
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  22. 21 Circuits, Bioelectricity, and DC Instruments
    1. Connection for AP® Courses
    2. 21.1 Resistors in Series and Parallel
    3. 21.2 Electromotive Force: Terminal Voltage
    4. 21.3 Kirchhoff’s Rules
    5. 21.4 DC Voltmeters and Ammeters
    6. 21.5 Null Measurements
    7. 21.6 DC Circuits Containing Resistors and Capacitors
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  23. 22 Magnetism
    1. Connection for AP® Courses
    2. 22.1 Magnets
    3. 22.2 Ferromagnets and Electromagnets
    4. 22.3 Magnetic Fields and Magnetic Field Lines
    5. 22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
    6. 22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications
    7. 22.6 The Hall Effect
    8. 22.7 Magnetic Force on a Current-Carrying Conductor
    9. 22.8 Torque on a Current Loop: Motors and Meters
    10. 22.9 Magnetic Fields Produced by Currents: Ampere’s Law
    11. 22.10 Magnetic Force between Two Parallel Conductors
    12. 22.11 More Applications of Magnetism
    13. Glossary
    14. Section Summary
    15. Conceptual Questions
    16. Problems & Exercises
    17. Test Prep for AP® Courses
  24. 23 Electromagnetic Induction, AC Circuits, and Electrical Technologies
    1. Connection for AP® Courses
    2. 23.1 Induced Emf and Magnetic Flux
    3. 23.2 Faraday’s Law of Induction: Lenz’s Law
    4. 23.3 Motional Emf
    5. 23.4 Eddy Currents and Magnetic Damping
    6. 23.5 Electric Generators
    7. 23.6 Back Emf
    8. 23.7 Transformers
    9. 23.8 Electrical Safety: Systems and Devices
    10. 23.9 Inductance
    11. 23.10 RL Circuits
    12. 23.11 Reactance, Inductive and Capacitive
    13. 23.12 RLC Series AC Circuits
    14. Glossary
    15. Section Summary
    16. Conceptual Questions
    17. Problems & Exercises
    18. Test Prep for AP® Courses
  25. 24 Electromagnetic Waves
    1. Connection for AP® Courses
    2. 24.1 Maxwell’s Equations: Electromagnetic Waves Predicted and Observed
    3. 24.2 Production of Electromagnetic Waves
    4. 24.3 The Electromagnetic Spectrum
    5. 24.4 Energy in Electromagnetic Waves
    6. Glossary
    7. Section Summary
    8. Conceptual Questions
    9. Problems & Exercises
    10. Test Prep for AP® Courses
  26. 25 Geometric Optics
    1. Connection for AP® Courses
    2. 25.1 The Ray Aspect of Light
    3. 25.2 The Law of Reflection
    4. 25.3 The Law of Refraction
    5. 25.4 Total Internal Reflection
    6. 25.5 Dispersion: The Rainbow and Prisms
    7. 25.6 Image Formation by Lenses
    8. 25.7 Image Formation by Mirrors
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  27. 26 Vision and Optical Instruments
    1. Connection for AP® Courses
    2. 26.1 Physics of the Eye
    3. 26.2 Vision Correction
    4. 26.3 Color and Color Vision
    5. 26.4 Microscopes
    6. 26.5 Telescopes
    7. 26.6 Aberrations
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  28. 27 Wave Optics
    1. Connection for AP® Courses
    2. 27.1 The Wave Aspect of Light: Interference
    3. 27.2 Huygens's Principle: Diffraction
    4. 27.3 Young’s Double Slit Experiment
    5. 27.4 Multiple Slit Diffraction
    6. 27.5 Single Slit Diffraction
    7. 27.6 Limits of Resolution: The Rayleigh Criterion
    8. 27.7 Thin Film Interference
    9. 27.8 Polarization
    10. 27.9 *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
    15. Test Prep for AP® Courses
  29. 28 Special Relativity
    1. Connection for AP® Courses
    2. 28.1 Einstein’s Postulates
    3. 28.2 Simultaneity And Time Dilation
    4. 28.3 Length Contraction
    5. 28.4 Relativistic Addition of Velocities
    6. 28.5 Relativistic Momentum
    7. 28.6 Relativistic Energy
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  30. 29 Introduction to Quantum Physics
    1. Connection for AP® Courses
    2. 29.1 Quantization of Energy
    3. 29.2 The Photoelectric Effect
    4. 29.3 Photon Energies and the Electromagnetic Spectrum
    5. 29.4 Photon Momentum
    6. 29.5 The Particle-Wave Duality
    7. 29.6 The Wave Nature of Matter
    8. 29.7 Probability: The Heisenberg Uncertainty Principle
    9. 29.8 The Particle-Wave Duality Reviewed
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
    14. Test Prep for AP® Courses
  31. 30 Atomic Physics
    1. Connection for AP® Courses
    2. 30.1 Discovery of the Atom
    3. 30.2 Discovery of the Parts of the Atom: Electrons and Nuclei
    4. 30.3 Bohr’s Theory of the Hydrogen Atom
    5. 30.4 X Rays: Atomic Origins and Applications
    6. 30.5 Applications of Atomic Excitations and De-Excitations
    7. 30.6 The Wave Nature of Matter Causes Quantization
    8. 30.7 Patterns in Spectra Reveal More Quantization
    9. 30.8 Quantum Numbers and Rules
    10. 30.9 The Pauli Exclusion Principle
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
    15. Test Prep for AP® Courses
  32. 31 Radioactivity and Nuclear Physics
    1. Connection for AP® Courses
    2. 31.1 Nuclear Radioactivity
    3. 31.2 Radiation Detection and Detectors
    4. 31.3 Substructure of the Nucleus
    5. 31.4 Nuclear Decay and Conservation Laws
    6. 31.5 Half-Life and Activity
    7. 31.6 Binding Energy
    8. 31.7 Tunneling
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  33. 32 Medical Applications of Nuclear Physics
    1. Connection for AP® Courses
    2. 32.1 Medical Imaging and Diagnostics
    3. 32.2 Biological Effects of Ionizing Radiation
    4. 32.3 Therapeutic Uses of Ionizing Radiation
    5. 32.4 Food Irradiation
    6. 32.5 Fusion
    7. 32.6 Fission
    8. 32.7 Nuclear Weapons
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
    13. Test Prep for AP® Courses
  34. 33 Particle Physics
    1. Connection for AP® Courses
    2. 33.1 The Yukawa Particle and the Heisenberg Uncertainty Principle Revisited
    3. 33.2 The Four Basic Forces
    4. 33.3 Accelerators Create Matter from Energy
    5. 33.4 Particles, Patterns, and Conservation Laws
    6. 33.5 Quarks: Is That All There Is?
    7. 33.6 GUTs: The Unification of Forces
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
    12. Test Prep for AP® Courses
  35. 34 Frontiers of Physics
    1. Connection for AP® Courses
    2. 34.1 Cosmology and Particle Physics
    3. 34.2 General Relativity and Quantum Gravity
    4. 34.3 Superstrings
    5. 34.4 Dark Matter and Closure
    6. 34.5 Complexity and Chaos
    7. 34.6 High-Temperature Superconductors
    8. 34.7 Some Questions We Know to Ask
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  36. A | Atomic Masses
  37. B | Selected Radioactive Isotopes
  38. C | Useful Information
  39. D | Glossary of Key Symbols and Notation
  40. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
    22. Chapter 22
    23. Chapter 23
    24. Chapter 24
    25. Chapter 25
    26. Chapter 26
    27. Chapter 27
    28. Chapter 28
    29. Chapter 29
    30. Chapter 30
    31. Chapter 31
    32. Chapter 32
    33. Chapter 33
    34. Chapter 34
  41. Index

28.2 Simultaneity And Time Dilation

1.

(a) What is γγ size 12{γ} {} if v=0.250cv=0.250c size 12{v=0 "." "250"c} {}? (b) If v=0.500cv=0.500c size 12{v=0 "." "500"c} {}?

2.

(a) What is γγ size 12{γ} {} if v=0.100cv=0.100c size 12{v=0 "." "100"c} {}? (b) If v=0.900cv=0.900c size 12{v=0 "." "900"c} {}?

3.

Particles called ππ size 12{π} {}-mesons are produced by accelerator beams. If these particles travel at 2.70×108m/s2.70×108m/s size 12{2 "." "70" times "10" rSup { size 8{8} } `"m/s"} {} and live 2.60×108s2.60×108s when at rest relative to an observer, how long do they live as viewed in the laboratory?

4.

Suppose a particle called a kaon is created by cosmic radiation striking the atmosphere. It moves by you at 0.980c0.980c size 12{0 "." "980"c} {}, and it lives 1.24×108s1.24×108s when at rest relative to an observer. How long does it live as you observe it?

5.

A neutral ππ size 12{π} {}-meson is a particle that can be created by accelerator beams. If one such particle lives 1.40×1016s1.40×1016s as measured in the laboratory, and 0.840×1016s0.840×1016s when at rest relative to an observer, what is its velocity relative to the laboratory?

6.

A neutron lives 900 s when at rest relative to an observer. How fast is the neutron moving relative to an observer who measures its life span to be 2065 s?

7.

If relativistic effects are to be less than 1%, then γγ size 12{γ} {} must be less than 1.01. At what relative velocity is γ=1.01γ=1.01 size 12{γ=1 "." "01"} {}?

8.

If relativistic effects are to be less than 3%, then γγ size 12{γ} {} must be less than 1.03. At what relative velocity is γ=1.03γ=1.03 size 12{γ=1 "." "03"} {}?

9.

(a) At what relative velocity is γ=1.50γ=1.50 size 12{γ=1 "." "50"} {}? (b) At what relative velocity is γ=100γ=100 size 12{γ="100"} {}?

10.

(a) At what relative velocity is γ=2.00γ=2.00 size 12{γ=2 "." "00"} {}? (b) At what relative velocity is γ=10.0γ=10.0 size 12{γ="10" "." 0} {}?

11.

Unreasonable Results

(a) Find the value of γγ size 12{γ} {} for the following situation. An Earth-bound observer measures 23.9 h to have passed while signals from a high-velocity space probe indicate that 24.0 h24.0 h size 12{"24" "." 0" h"} {} have passed on board. (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

28.3 Length Contraction

12.

A spaceship, 200 m long as seen on board, moves by the Earth at 0.970c0.970c size 12{0 "." "970"c} {}. What is its length as measured by an Earth-bound observer?

13.

How fast would a 6.0 m-long sports car have to be going past you in order for it to appear only 5.5 m long?

14.

(a) How far does the muon in Example 28.1 travel according to the Earth-bound observer? (b) How far does it travel as viewed by an observer moving with it? Base your calculation on its velocity relative to the Earth and the time it lives (proper time). (c) Verify that these two distances are related through length contraction γ=3.20γ=3.20 size 12{ ital "γ="3 "." "20"} {}.

15.

(a) How long would the muon in Example 28.1 have lived as observed on the Earth if its velocity was 0.0500c0.0500c size 12{0 "." "0500"c} {}? (b) How far would it have traveled as observed on the Earth? (c) What distance is this in the muon’s frame?

16.

(a) How long does it take the astronaut in Example 28.2 to travel 4.30 ly at 0.99944c0.99944c (as measured by the Earth-bound observer)? (b) How long does it take according to the astronaut? (c) Verify that these two times are related through time dilation with γ=30.00γ=30.00 size 12{ ital "γ=""30" "." "00"} {} as given.

17.

(a) How fast would an athlete need to be running for a 100-m race to look 100 yd long? (b) Is the answer consistent with the fact that relativistic effects are difficult to observe in ordinary circumstances? Explain.

18.

Unreasonable Results

(a) Find the value of γγ size 12{γ} {} for the following situation. An astronaut measures the length of her spaceship to be 25.0 m, while an Earth-bound observer measures it to be 100 m. (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

19.

Unreasonable Results

A spaceship is heading directly toward the Earth at a velocity of 0.800c0.800c size 12{0 "." "800"c} {}. The astronaut on board claims that he can send a canister toward the Earth at 1.20c1.20c size 12{1 "." "20"c} {} relative to the Earth. (a) Calculate the velocity the canister must have relative to the spaceship. (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

28.4 Relativistic Addition of Velocities

20.

Suppose a spaceship heading straight towards the Earth at 0.750c0.750c size 12{0 "." "750"c} {} can shoot a canister at 0.500c0.500c size 12{0 "." "750"c} {} relative to the ship. (a) What is the velocity of the canister relative to the Earth, if it is shot directly at the Earth? (b) If it is shot directly away from the Earth?

21.

Repeat the previous problem with the ship heading directly away from the Earth.

22.

If a spaceship is approaching the Earth at 0.100c0.100c and a message capsule is sent toward it at 0.100c0.100c relative to the Earth, what is the speed of the capsule relative to the ship?

23.

(a) Suppose the speed of light were only 3000 m/s3000 m/s. A jet fighter moving toward a target on the ground at 800 m/s800 m/s shoots bullets, each having a muzzle velocity of 1000 m/s1000 m/s. What are the bullets’ velocity relative to the target? (b) If the speed of light was this small, would you observe relativistic effects in everyday life? Discuss.

24.

If a galaxy moving away from the Earth has a speed of 1000 km/s1000 km/s size 12{1,"000"" m/s"} {} and emits 656 nm656 nm size 12{"656"" nm"} {} light characteristic of hydrogen (the most common element in the universe). (a) What wavelength would we observe on the Earth? (b) What type of electromagnetic radiation is this? (c) Why is the speed of the Earth in its orbit negligible here?

25.

A space probe speeding towards the nearest star moves at 0.250c0.250c size 12{0 "." "250"c} {} and sends radio information at a broadcast frequency of 1.00 GHz. What frequency is received on the Earth?

26.

If two spaceships are heading directly towards each other at 0.800c0.800c size 12{0 "." "800"c} {}, at what speed must a canister be shot from the first ship to approach the other at 0.999c0.999c size 12{0 "." "999"c} {} as seen by the second ship?

27.

Two planets are on a collision course, heading directly towards each other at 0.250c0.250c size 12{0 "." "250"c} {}. A spaceship sent from one planet approaches the second at 0.750c0.750c size 12{0 "." "750"c} {} as seen by the second planet. What is the velocity of the ship relative to the first planet?

28.

When a missile is shot from one spaceship towards another, it leaves the first at 0.950c0.950c size 12{0 "." "950"c} {} and approaches the other at 0.750c0.750c size 12{0 "." "750"c} {}. What is the relative velocity of the two ships?

29.

What is the relative velocity of two spaceships if one fires a missile at the other at 0.750c0.750c and the other observes it to approach at 0.950c0.950c?

30.

Near the center of our galaxy, hydrogen gas is moving directly away from us in its orbit about a black hole. We receive 1900 nm electromagnetic radiation and know that it was 1875 nm when emitted by the hydrogen gas. What is the speed of the gas?

31.

A highway patrol officer uses a device that measures the speed of vehicles by bouncing radar off them and measuring the Doppler shift. The outgoing radar has a frequency of 100 GHz and the returning echo has a frequency 15.0 kHz higher. What is the velocity of the vehicle? Note that there are two Doppler shifts in echoes. Be certain not to round off until the end of the problem, because the effect is small.

32.

Prove that for any relative velocity vv size 12{v} {} between two observers, a beam of light sent from one to the other will approach at speed cc size 12{c} {} (provided that vv size 12{v} {} is less than cc size 12{c} {}, of course).

33.

Show that for any relative velocity vv size 12{v} {} between two observers, a beam of light projected by one directly away from the other will move away at the speed of light (provided that vv size 12{v} {} is less than cc size 12{c} {}, of course).

34.

(a) All but the closest galaxies are receding from our own Milky Way Galaxy. If a galaxy 12.0×109 ly12.0×109 ly size 12{"12" "." 0 times "10" rSup { size 8{9} } " ly"} {} ly away is receding from us at 0.0.900c0.900c, at what velocity relative to us must we send an exploratory probe to approach the other galaxy at 0.990c0.990c, as measured from that galaxy? (b) How long will it take the probe to reach the other galaxy as measured from the Earth? You may assume that the velocity of the other galaxy remains constant. (c) How long will it then take for a radio signal to be beamed back? (All of this is possible in principle, but not practical.)

28.5 Relativistic Momentum

35.

Find the momentum of a helium nucleus having a mass of 6.68×10–27 kg6.68×10–27 kg size 12{6 "." "68" times "10" rSup { size 8{"27"} } " kg"} {} that is moving at 0.200c0.200c size 12{0 "." "200"c} {}.

36.

What is the momentum of an electron traveling at 0.980c0.980c size 12{0 "." "980"c} {}?

37.

(a) Find the momentum of a 1.00×109 kg1.00×109 kg size 12{1 "." "00" times "10" rSup { size 8{9} } " kg"} {} asteroid heading towards the Earth at 30.0 km/s30.0 km/s size 12{"30" "." 0" km/s"} {}. (b) Find the ratio of this momentum to the classical momentum. (Hint: Use the approximation that γ=1+(1/2)v2/c2γ=1+(1/2)v2/c2 size 12{γ=1+ \( 1/2 \) v rSup { size 8{2} } /c rSup { size 8{2} } } {} at low velocities.)

38.

(a) What is the momentum of a 2000 kg satellite orbiting at 4.00 km/s? (b) Find the ratio of this momentum to the classical momentum. (Hint: Use the approximation that γ=1+(1/2)v2/c2γ=1+(1/2)v2/c2 size 12{γ=1+ \( 1/2 \) v rSup { size 8{2} } /c rSup { size 8{2} } } {} at low velocities.)

39.

What is the velocity of an electron that has a momentum of 3.04×10–21 kg⋅m/s3.04×10–21 kg⋅m/s size 12{3 "." "34" times "10" rSup { size 8{"21"} } " kg" "." "m/s?"} {}? Note that you must calculate the velocity to at least four digits to see the difference from cc.

40.

Find the velocity of a proton that has a momentum of 4.48×–10-19 kg⋅m/s.4.48×–10-19 kg⋅m/s. size 12{4 "." "48" times "10" rSup { size 8{"19"} } " kg" "." "m/s" "." } {}

41.

(a) Calculate the speed of a 1.00-μg1.00-μg particle of dust that has the same momentum as a proton moving at 0.999c0.999c size 12{0 "." "999"c} {}. (b) What does the small speed tell us about the mass of a proton compared to even a tiny amount of macroscopic matter?

42.

(a) Calculate γγ size 12{γ} {} for a proton that has a momentum of 1.00 kg⋅m/s.1.00 kg⋅m/s. size 12{1 "." "00 kg" "." "m/s" "." } {} (b) What is its speed? Such protons form a rare component of cosmic radiation with uncertain origins.

28.6 Relativistic Energy

43.

What is the rest energy of an electron, given its mass is 9.11×1031 kg9.11×1031 kg? Give your answer in joules and MeV.

44.

Find the rest energy in joules and MeV of a proton, given its mass is 1.67×1027 kg1.67×1027 kg.

45.

If the rest energies of a proton and a neutron (the two constituents of nuclei) are 938.3 and 939.6 MeV respectively, what is the difference in their masses in kilograms?

46.

The Big Bang that began the universe is estimated to have released 1068 J1068 J size 12{10 rSup { size 8{"68"} } " J"} {} of energy. How many stars could half this energy create, assuming the average star’s mass is 4.00×1030 kg4.00×1030 kg size 12{4 "." "00" times "10" rSup { size 8{"30"} } " kg"} {}?

47.

A supernova explosion of a 2.00×1031 kg2.00×1031 kg size 12{2 "." "00" times "10" rSup { size 8{"31"} } " kg"} {} star produces 1.00×1044 kg1.00×1044 kg size 12{1 "." "00" times "10" rSup { size 8{"44"} } " kg"} {} of energy. (a) How many kilograms of mass are converted to energy in the explosion? (b) What is the ratio Δm/mΔm/m size 12{Δm/m} {} of mass destroyed to the original mass of the star?

48.

(a) Using data from Table 7.1, calculate the mass converted to energy by the fission of 1.00 kg of uranium. (b) What is the ratio of mass destroyed to the original mass, Δm/mΔm/m?

49.

(a) Using data from Table 7.1, calculate the amount of mass converted to energy by the fusion of 1.00 kg of hydrogen. (b) What is the ratio of mass destroyed to the original mass, Δm/mΔm/m? (c) How does this compare with Δm/mΔm/m for the fission of 1.00 kg of uranium?

50.

There is approximately 1034 J1034 J of energy available from fusion of hydrogen in the world’s oceans. (a) If 1033 J1033 J size 12{10 rSup { size 8{"33"} } " J"} {} of this energy were utilized, what would be the decrease in mass of the oceans? Assume that 0.08% of the mass of a water molecule is converted to energy during the fusion of hydrogen. (b) How great a volume of water does this correspond to? (c) Comment on whether this is a significant fraction of the total mass of the oceans.

51.

A muon has a rest mass energy of 105.7 MeV, and it decays into an electron and a massless particle. (a) If all the lost mass is converted into the electron’s kinetic energy, find γγ size 12{γ} {} for the electron. (b) What is the electron’s velocity?

52.

A ππ size 12{π} {}-meson is a particle that decays into a muon and a massless particle. The ππ size 12{π} {}-meson has a rest mass energy of 139.6 MeV, and the muon has a rest mass energy of 105.7 MeV. Suppose the ππ size 12{π} {}-meson is at rest and all of the missing mass goes into the muon’s kinetic energy. How fast will the muon move?

53.

(a) Calculate the relativistic kinetic energy of a 1000-kg car moving at 30.0 m/s if the speed of light were only 45.0 m/s. (b) Find the ratio of the relativistic kinetic energy to classical.

54.

Alpha decay is nuclear decay in which a helium nucleus is emitted. If the helium nucleus has a mass of 6.80×1027 kg6.80×1027 kg size 12{6 "." "80" times "10" rSup { size 8{ - "27"} } " kg"} {} and is given 5.00 MeV of kinetic energy, what is its velocity?

55.

(a) Beta decay is nuclear decay in which an electron is emitted. If the electron is given 0.750 MeV of kinetic energy, what is its velocity? (b) Comment on how the high velocity is consistent with the kinetic energy as it compares to the rest mass energy of the electron.

56.

A positron is an antimatter version of the electron, having exactly the same mass. When a positron and an electron meet, they annihilate, converting all of their mass into energy. (a) Find the energy released, assuming negligible kinetic energy before the annihilation. (b) If this energy is given to a proton in the form of kinetic energy, what is its velocity? (c) If this energy is given to another electron in the form of kinetic energy, what is its velocity?

57.

What is the kinetic energy in MeV of a ππ size 12{π} {}-meson that lives 1.40×1016 s1.40×1016 s size 12{1 "." "40" times 10 rSup { size 8{ - "16"} } " s"} {} as measured in the laboratory, and 0.840×1016 s0.840×1016 s size 12{0 "." "840" times 10 rSup { size 8{ - "16"} } " s"} {} when at rest relative to an observer, given that its rest energy is 135 MeV?

58.

Find the kinetic energy in MeV of a neutron with a measured life span of 2065 s, given its rest energy is 939.6 MeV, and rest life span is 900s.

59.

(a) Show that (pc)2/(mc2)2=γ21(pc)2/(mc2)2=γ21. This means that at large velocities pc>>mc2pc>>mc2. (b) Is EpcEpc size 12{E approx ital "pc"} {} when γ=30.0γ=30.0 size 12{γ="30" "." 0} {}, as for the astronaut discussed in the twin paradox?

60.

One cosmic ray neutron has a velocity of 0.250c0.250c relative to the Earth. (a) What is the neutron’s total energy in MeV? (b) Find its momentum. (c) Is EpcEpc size 12{E approx ital "pc"} {} in this situation? Discuss in terms of the equation given in part (a) of the previous problem.

61.

What is γγ size 12{γ} {} for a proton having a mass energy of 938.3 MeV accelerated through an effective potential of 1.0 TV (teravolt) at Fermilab outside Chicago?

62.

(a) What is the effective accelerating potential for electrons at the Stanford Linear Accelerator, if γ=1.00×105γ=1.00×105 size 12{γ=1 "." "00" times "10" rSup { size 8{5} } } {} for them? (b) What is their total energy (nearly the same as kinetic in this case) in GeV?

63.

(a) Using data from Table 7.1, find the mass destroyed when the energy in a barrel of crude oil is released. (b) Given these barrels contain 200 liters and assuming the density of crude oil is 750 kg/m3750 kg/m3, what is the ratio of mass destroyed to original mass, Δm/mΔm/m size 12{Δm/m} {}?

64.

(a) Calculate the energy released by the destruction of 1.00 kg of mass. (b) How many kilograms could be lifted to a 10.0 km height by this amount of energy?

65.

A Van de Graaff accelerator utilizes a 50.0 MV potential difference to accelerate charged particles such as protons. (a) What is the velocity of a proton accelerated by such a potential? (b) An electron?

66.

Suppose you use an average of 500 kW·h500 kW·h of electric energy per month in your home. (a) How long would 1.00 g of mass converted to electric energy with an efficiency of 38.0% last you? (b) How many homes could be supplied at the 500 kW·h500 kW·h per month rate for one year by the energy from the described mass conversion?

67.

(a) A nuclear power plant converts energy from nuclear fission into electricity with an efficiency of 35.0%. How much mass is destroyed in one year to produce a continuous 1000 MW of electric power? (b) Do you think it would be possible to observe this mass loss if the total mass of the fuel is 104kg104kg?

68.

Nuclear-powered rockets were researched for some years before safety concerns became paramount. (a) What fraction of a rocket’s mass would have to be destroyed to get it into a low Earth orbit, neglecting the decrease in gravity? (Assume an orbital altitude of 250 km, and calculate both the kinetic energy (classical) and the gravitational potential energy needed.) (b) If the ship has a mass of 1.00×105kg1.00×105kg (100 tons), what total yield nuclear explosion in tons of TNT is needed?

69.

The Sun produces energy at a rate of 4.00×10264.00×1026 size 12{4 "." "00" times "10" rSup { size 8{"26"} } } {} W by the fusion of hydrogen. (a) How many kilograms of hydrogen undergo fusion each second? (b) If the Sun is 90.0% hydrogen and half of this can undergo fusion before the Sun changes character, how long could it produce energy at its current rate? (c) How many kilograms of mass is the Sun losing per second? (d) What fraction of its mass will it have lost in the time found in part (b)?

70.

Unreasonable Results

A proton has a mass of 1.67×1027kg1.67×1027kg. A physicist measures the proton’s total energy to be 50.0 MeV. (a) What is the proton’s kinetic energy? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

71.

Construct Your Own Problem

Consider a highly relativistic particle. Discuss what is meant by the term “highly relativistic.” (Note that, in part, it means that the particle cannot be massless.) Construct a problem in which you calculate the wavelength of such a particle and show that it is very nearly the same as the wavelength of a massless particle, such as a photon, with the same energy. Among the things to be considered are the rest energy of the particle (it should be a known particle) and its total energy, which should be large compared to its rest energy.

72.

Construct Your Own Problem

Consider an astronaut traveling to another star at a relativistic velocity. Construct a problem in which you calculate the time for the trip as observed on the Earth and as observed by the astronaut. Also calculate the amount of mass that must be converted to energy to get the astronaut and ship to the velocity travelled. Among the things to be considered are the distance to the star, the velocity, and the mass of the astronaut and ship. Unless your instructor directs you otherwise, do not include any energy given to other masses, such as rocket propellants.

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
Citation information

© Aug 12, 2015 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.