Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Search for key terms or text.

Checkpoint

2.3

Vectors a,a, b,b, and ee are equivalent.

2.4

3 , 7 3 , 7

2.5

a. a=52,a=52, b. b=−4,−3,b=−4,−3, c. 3a4b=37,153a4b=37,15

2.7

v = −5 , 5 3 v = −5 , 5 3

2.8

45 85 , 10 85 45 85 , 10 85

2.9

a=16i11j,a=16i11j, b=22i22jb=22i22j

2.10

Approximately 516516 mph

2.12

5 2 5 2

2.13

z = −4 z = −4

2.14

( x + 2 ) 2 + ( y 4 ) 2 + ( z + 5 ) 2 = 52 ( x + 2 ) 2 + ( y 4 ) 2 + ( z + 5 ) 2 = 52

2.15

x 2 + ( y 2 ) 2 + ( z + 2 ) 2 = 14 x 2 + ( y 2 ) 2 + ( z + 2 ) 2 = 14

2.16

The set of points forms the two planes y=−2y=−2 and z=3.z=3.

2.17

A cylinder of radius 4 centered on the line with x=0andz=2.x=0andz=2.

2.18

S T = −1 , −9 , 1 = i 9 j + k S T = −1 , −9 , 1 = i 9 j + k

2.19

1 3 10 , 5 3 10 , 8 3 10 1 3 10 , 5 3 10 , 8 3 10

2.20

v = 16 2 , 12 2 , 20 2 v = 16 2 , 12 2 , 20 2

2.21

7

2.22

a. (r·p)q=12,−12,12;(r·p)q=12,−12,12; b. p2=53p2=53

2.23

θ0.22θ0.22 rad

2.24

x = 5 x = 5

2.25

a. α1.04α1.04 rad; b. β2.58β2.58 rad; c. γ1.40γ1.40 rad

2.26

Sales = $15,685.50; profit = $14,073.15

2.27

v=p+q,v=p+q, where p=185i+95jp=185i+95j and q=75i145jq=75i145j

2.28

21 knots

2.29

150 ft-lb

2.30

i 9 j + 2 k i 9 j + 2 k

2.31

Up (the positive z-direction)

2.32

i i

2.33

k k

2.34

16 16

2.35

40 40

2.36

8 i 35 j + 2 k 8 i 35 j + 2 k

2.37

−3 194 , −13 194 , 4 194 −3 194 , −13 194 , 4 194

2.38

6 13 6 13

2.39

17 17

2.40

88 units3

2.41

No, the triple scalar product is −40,−40, so the three vectors form the adjacent edges of a parallelepiped. They are not coplanar.

2.42

2020 N

2.43

Possible set of parametric equations: x=1+4t,y=−3+t,z=2+6t;x=1+4t,y=−3+t,z=2+6t;

related set of symmetric equations: x14=y+3=z26x14=y+3=z26

2.44

x = −1 7 t , y = 3 t , z = 6 2 t , 0 t 1 x = −1 7 t , y = 3 t , z = 6 2 t , 0 t 1

2.45

10 7 10 7

2.46

These lines are skew because their direction vectors are not parallel and there is no point (x,y,z)(x,y,z) that lies on both lines.

2.47

−2(x1)+(y+1)+3(z1)=0−2(x1)+(y+1)+3(z1)=0 or −2x+y+3z=0−2x+y+3z=0

2.48

15 21 15 21

2.49

x = t , y = 7 3 t , z = 4 2 t x = t , y = 7 3 t , z = 4 2 t

2.50

1.441.44 rad

2.51

9 30 9 30

2.53

The traces parallel to the xy-plane are ellipses and the traces parallel to the xz- and yz-planes are hyperbolas. Specifically, the trace in the xy-plane is ellipse x232+y222=1,x232+y222=1, the trace in the xz-plane is hyperbola x232z252=1,x232z252=1, and the trace in the yz-plane is hyperbola y222z252=1y222z252=1 (see the following figure).

2.54

Hyperboloid of one sheet, centered at (0,0,1)(0,0,1)

2.55

The rectangular coordinates of the point are (532,52,4).(532,52,4).

2.56

( 8 2 , 3 π 4 , −7 ) ( 8 2 , 3 π 4 , −7 )

2.57

This surface is a cylinder with radius 6.6.

2.58



Cartesian: (32,12,3),(32,12,3), cylindrical: (1,5π6,3)(1,5π6,3)

2.59

a. This is the set of all points 1313 units from the origin. This set forms a sphere with radius 13.13. b. This set of points forms a half plane. The angle between the half plane and the positive x-axis is θ=2π3.θ=2π3. c. Let PP be a point on this surface. The position vector of this point forms an angle of φ=π4φ=π4 with the positive z-axis, which means that points closer to the origin are closer to the axis. These points form a half-cone.

2.60

( 4000 , 151 ° , 124 ° ) ( 4000 , 151 ° , 124 ° )

2.61

Spherical coordinates with the origin located at the center of the earth, the z-axis aligned with the North Pole, and the x-axis aligned with the prime meridian

Section 2.1 Exercises

1.

a. PQ=2,2;PQ=2,2; b. PQ=2i+2jPQ=2i+2j

3.

a. QP=−2,−2;QP=−2,−2; b. QP=−2i2jQP=−2i2j

5.

a. PQ+PR=0,6;PQ+PR=0,6; b. PQ+PR=6jPQ+PR=6j

7.

a. 2PQ2PR=8,−4;2PQ2PR=8,−4; b. 2PQ2PR=8i4j2PQ2PR=8i4j

9.

a. 12,12;12,12; b. 12i+12j12i+12j

11.

3 5 , 4 5 3 5 , 4 5

13.

Q ( 0 , 2 ) Q ( 0 , 2 )

15.

a. a+b=3i+4j,a+b=3i+4j, a+b=3,4;a+b=3,4; b. ab=i2j,ab=i2j, ab=1,−2;ab=1,−2; c. Answers will vary; d. 2a=4i+2j,2a=4i+2j, 2a=4,2,2a=4,2, b=i3j,b=i3j, b=−1,−3,b=−1,−3, 2ab=3ij,2ab=3ij, 2ab=3,−12ab=3,−1

17.

15 15

19.

λ = −3 λ = −3

21.

a. a(0)=1,0,a(0)=1,0, a(π)=−1,0;a(π)=−1,0; b. Answers may vary; c. Answers may vary

23.

Answers may vary

25.

v = 21 5 , 28 5 v = 21 5 , 28 5

27.

v = 21 34 34 , 35 34 34 v = 21 34 34 , 35 34 34

29.

u = 3 , 1 u = 3 , 1

31.

u = 0 , 5 u = 0 , 5

33.

u = −5 3 , 5 u = −5 3 , 5

35.

θ = 7 π 4 θ = 7 π 4

37.

Answers may vary

39.

a. z0=f(x0)+f(x0);z0=f(x0)+f(x0); b. u=11+[f(x0)]21,f(x0)u=11+[f(x0)]21,f(x0)

43.

D ( 6 , 1 ) D ( 6 , 1 )

45.

60.62 , 35 60.62 , 35

47.

The horizontal and vertical components are 750750 ft/sec and 1299.041299.04 ft/sec, respectively.

49.

The magnitude of resultant force is 94.7194.71 lb; the direction angle is 13.42°.13.42°.

51.

The magnitude of the third vector is 60.0360.03 N; the direction angle is 259.38°.259.38°.

53.

The new ground speed of the airplane is 572.19572.19 mph; the new direction is N41.82E.N41.82E.

55.

T1=30.13lb,T1=30.13lb, T2=38.35lbT2=38.35lb

57.

v1=750v1=750 lb, v2=1299v2=1299 lb

59.

The two horizontal and vertical components of the force of tension are 2828 lb and 4242 lb, respectively.

Section 2.2 Exercises

61.

a. (2,0,5),(2,0,0),(2,3,0),(0,3,0),(0,3,5),(0,0,5);(2,0,5),(2,0,0),(2,3,0),(0,3,0),(0,3,5),(0,0,5); b. 3838

63.

A union of two planes: y=5y=5 (a plane parallel to the xz-plane) and z=6z=6 (a plane parallel to the xy-plane)

65.

A cylinder of radius 11 centered on the line y=1,z=1y=1,z=1

67.

z = 1 z = 1

69.

z = −2 z = −2

71.

( x + 1 ) 2 + ( y 7 ) 2 + ( z 4 ) 2 = 16 ( x + 1 ) 2 + ( y 7 ) 2 + ( z 4 ) 2 = 16

73.

( x + 3 ) 2 + ( y 3.5 ) 2 + ( z 8 ) 2 = 29 4 ( x + 3 ) 2 + ( y 3.5 ) 2 + ( z 8 ) 2 = 29 4

75.

Center C(0,0,2)C(0,0,2) and radius 11

77.

a. PQ=−4,−1,2;PQ=−4,−1,2; b. PQ=−4ij+2kPQ=−4ij+2k

79.

a. PQ=6,−24,24;PQ=6,−24,24; b. PQ=6i24j+24kPQ=6i24j+24k

81.

Q ( 5 , 2 , 8 ) Q ( 5 , 2 , 8 )

83.

a+b=−6,4,−3,a+b=−6,4,−3, 4a=−4,−8,16,4a=−4,−8,16, −5a+3b=−10,28,−41−5a+3b=−10,28,−41

85.

a+b=−1,0,−1,a+b=−1,0,−1, 4a=0,0,−4,4a=0,0,−4, −5a+3b=−3,0,5−5a+3b=−3,0,5

87.

uv=38,uv=38, −2u=229−2u=229

89.

uv=2,uv=2, −2u=213−2u=213

91.

a = 3 5 i 4 5 j a = 3 5 i 4 5 j

93.

2 62 , 7 62 , 3 62 2 62 , 7 62 , 3 62

95.

2 6 , 1 6 , 1 6 2 6 , 1 6 , 1 6

97.

Equivalent vectors

99.

u = 70 59 , 10 59 , 30 59 u = 70 59 , 10 59 , 30 59

101.

u = 4 5 sin t , 4 5 cos t , 2 5 u = 4 5 sin t , 4 5 cos t , 2 5

103.

5 154 , 15 154 , 60 154 5 154 , 15 154 , 60 154

105.

α=7,α=7, β=15β=15

111.

a. F=30,40,0;F=30,40,0; b. 53°53°

113.

D = 10 k D = 10 k

115.

F 4 = −20 , −7 , −3 F 4 = −20 , −7 , −3

117.

a. F=−19.6k,F=−19.6k, F=19.6F=19.6 N; b. T=19.6k,T=19.6k, T=19.6T=19.6 N

119.

a. F=−294kF=−294k N; b. F1=4933,49,−98,F1=4933,49,−98, F2=4933,−49,−98,F2=4933,−49,−98, and F3=9833,0,−98F3=9833,0,−98 (each component is expressed in newtons)

121.

a. v(1)=−0.84,0.54,2v(1)=−0.84,0.54,2 (each component is expressed in centimeters per second); v(1)=2.24v(1)=2.24 (expressed in centimeters per second); a(1)=−0.54,−0.84,0a(1)=−0.54,−0.84,0 (each component expressed in centimeters per second squared);

b.

Section 2.3 Exercises

123.

6

125.

0

127.

(a·b)c=−11,−11,11;(a·b)c=−11,−11,11; (a·c)b=−20,−35,5(a·c)b=−20,−35,5

129.

(a·b)c=1,0,−2;(a·b)c=1,0,−2; (a·c)b=1,0,−1(a·c)b=1,0,−1

131.

a. θ=2.82θ=2.82 rad; b. θθ is not acute.

133.

a. θ=π4θ=π4 rad; b. θθ is acute.

135.

θ = π 2 θ = π 2

137.

θ = π 3 θ = π 3

139.

θ=2θ=2 rad

141.

Orthogonal

143.

Not orthogonal

145.

a=4α3,α,a=4α3,α, where α0α0 is a real number

147.

u=αi+αj+βk,u=αi+αj+βk, where αα and ββ are real numbers such that α2+β20α2+β20

149.

α = −6 α = −6

151.

a. OP=4i+5j,OP=4i+5j, OQ=5i7j;OQ=5i7j; b. 105.8°105.8°

153.

68.33 ° 68.33 °

155.

uu and vv are orthogonal; vv and ww are orthogonal.

161.

a. cosα=23,cosβ=23,cosα=23,cosβ=23, and cosγ=13;cosγ=13; b. α=48°,α=48°, β=48°,β=48°, and γ=71°γ=71°

163.

a. cosα=130,cosβ=530,cosα=130,cosβ=530, and cosγ=230;cosγ=230; b. α=101°,α=101°, β=24°,β=24°, and γ=69°γ=69°

167.

a. w=8029,3229;w=8029,3229; b. compuv=1629compuv=1629

169.

a. w=2413,0,1613;w=2413,0,1613; b. compuv=813compuv=813

171.

a. w=2425,1825;w=2425,1825; b. q=5125,6825,q=5125,6825, v=w+q=2425,1825+5125,6825v=w+q=2425,1825+5125,6825

173.

a. 22;22; b. 109.47°109.47°

175.

17 N · m 17 N · m

177.

1175 ft·lbft·lb

179.

W = 43301.27 ft-lbft-lb

181.

a. F1+F2=52.9F1+F2=52.9 lb; b. The direction angles are α=74.5°,α=74.5°, β=36.7°,β=36.7°, and γ=57.7°.γ=57.7°.

Section 2.4 Exercises

183.

a. u×v=0,0,4;u×v=0,0,4;
b.

185.

a. u×v=6,−4,2;u×v=6,−4,2;
b.

187.

−2 j 4 k −2 j 4 k

189.

w = 1 3 6 i 7 3 6 j 2 3 6 k w = 1 3 6 i 7 3 6 j 2 3 6 k

191.

w = 4 21 i 2 21 j 1 21 k w = 4 21 i 2 21 j 1 21 k

193.

α = 10 α = 10

197.

−3 i + 11 j + 2 k −3 i + 11 j + 2 k

199.

w = −1 , e t , e t w = −1 , e t , e t

201.

−26 i + 17 j + 9 k −26 i + 17 j + 9 k

203.

72 ° 72 °

209.

7 7

211.

a. 56;56; b. 562;562; c. 56595659

213.

a. 2;2; b. 22

215.

v·(u×w)=−1,v·(u×w)=−1, w·(u×v)=1w·(u×v)=1

217.

a=1,2,3,a=1,2,3, b=0,2,5,b=0,2,5, c=8,9,2;c=8,9,2; a·(b×c)=−9a·(b×c)=−9

219.

a. α=1;α=1; b. h=1,h=1,

225.

Yes, AD=αAB+βAC,AD=αAB+βAC, where α=−1α=−1 and β=1.β=1.

227.

k k

229.

0 , ± 4 5 , 2 5 0 , ± 4 5 , 2 5

233.

w=w31,w3+1,w3,w=w31,w3+1,w3, where w3w3 is any real number

235.

8.66 ft-lb

237.

559 N

239.

F = 4.8 × 10 −15 k N F = 4.8 × 10 −15 k N

241.

a. B(t)=2sint5,2cost5,15;B(t)=2sint5,2cost5,15;
b.

Section 2.5 Exercises

243.

a. r=−3,5,9+t7,−12,−7,r=−3,5,9+t7,−12,−7, t;t; b. x=−3+7t,y=512t,z=97t,x=−3+7t,y=512t,z=97t, t;t; c. x+37=y5−12=z9−7;x+37=y5−12=z9−7; d. x=−3+7t,y=512t,z=97t,x=−3+7t,y=512t,z=97t, t[0,1]t[0,1]

245.

a. r=−1,0,5+t5,0,−2,r=−1,0,5+t5,0,−2, t;t; b. x=−1+5t,y=0,z=52t,x=−1+5t,y=0,z=52t, t;t; c. x+15=z5−2,y=0;x+15=z5−2,y=0; d. x=−1+5t,y=0,z=52t,x=−1+5t,y=0,z=52t, t[0,1]t[0,1]

247.

a. x=1+t,y=−2+2t,z=3+3t,x=1+t,y=−2+2t,z=3+3t, t;t; b. x11=y+22=z33;x11=y+22=z33; c. (0,−4,0)(0,−4,0)

249.

a. x=3+t,y=1,z=5,x=3+t,y=1,z=5, t;t; b. y=1,z=5;y=1,z=5; c. The line does not intersect the xy-plane.

251.

a. P(1,3,5),P(1,3,5), v=1,1,4;v=1,1,4; b. 33

253.

2 2 3 2 2 3

255.

a. Parallel; b. 2323

259.

( −12 , 6 , −4 ) ( −12 , 6 , −4 )

261.

The lines are skew.

263.

The lines are equal.

265.

a. x=1+t,y=1t,z=1+2t,x=1+t,y=1t,z=1+2t, t;t; b. For instance, the line passing through AA with direction vector j:x=1,z=1;j:x=1,z=1; c. For instance, the line passing through AA and point (2,0,0)(2,0,0) that belongs to LL is a line that intersects; L:x1−1=y1=z1L:x1−1=y1=z1

267.

a. 3x2y+4z=0;3x2y+4z=0; b. 3x2y+4z=03x2y+4z=0

269.

a. (x1)+2(y2)+3(z3)=0;(x1)+2(y2)+3(z3)=0; b. x+2y+3z14=0x+2y+3z14=0

271.

a. n=4i+5j+10k;n=4i+5j+10k; b. (5,0,0),(5,0,0), (0,4,0),(0,4,0), and (0,0,2);(0,0,2);
c.

273.

a. n=3i2j+4k;n=3i2j+4k; b. (0,0,0);(0,0,0);
c.

275.

( 3 , 0 , 0 ) ( 3 , 0 , 0 )

277.

x=−2+2t,y=13t,z=3+t,x=−2+2t,y=13t,z=3+t, tt

281.

a. −2y+3z1=0;−2y+3z1=0; b. 0,−2,3·x1,y1,z1=0;0,−2,3·x1,y1,z1=0; c. x=0,y=−2t,z=3t,x=0,y=−2t,z=3t, tt

Answers may vary by a sign, depending on how the vector cross multiplication is performed.

283.

a. Answers may vary; b. x11=z6−1,y=4x11=z6−1,y=4

285.

2 x 5 y 3 z + 15 = 0 2 x 5 y 3 z + 15 = 0

287.

The line intersects the plane at point P(−3,4,0).P(−3,4,0).

289.

16 14 16 14

291.

a. The planes are neither parallel nor orthogonal; b. 62°62°

293.

a. The planes are parallel.

295.

1 6 1 6

297.

a. 1829;1829; b. P(5129,13029,6229)P(5129,13029,6229)

299.

4 x 3 y = 0 4 x 3 y = 0

301.

a. v(1)=cos1,sin1,2;v(1)=cos1,sin1,2; b. (cos1)(xsin1)(sin1)(ycos1)+2(z2)=0;(cos1)(xsin1)(sin1)(ycos1)+2(z2)=0;
c.

Section 2.6 Exercises

303.

The surface is a cylinder with the rulings parallel to the y-axis.

305.

The surface is a cylinder with rulings parallel to the y-axis.

307.

The surface is a cylinder with rulings parallel to the x-axis.

309.

a. Cylinder; b. The x-axis

311.

a. Hyperboloid of two sheets; b. The x-axis

313.

b.

315.

d.

317.

a.

319.

x29+y214+z214=1,x29+y214+z214=1, hyperboloid of one sheet with the x-axis as its axis of symmetry

321.

x2103+y22z210=1,x2103+y22z210=1, hyperboloid of two sheets with the y-axis as its axis of symmetry

323.

y=z25+x25,y=z25+x25, hyperbolic paraboloid with the y-axis as its axis of symmetry

325.

x215+y23+z25=1,x215+y23+z25=1, ellipsoid

327.

x240+y28z25=0,x240+y28z25=0, elliptic cone with the z-axis as its axis of symmetry

329.

x=y22+z23,x=y22+z23, elliptic paraboloid with the x-axis as its axis of symmetry

331.

Parabola y=x24,y=x24,

333.

Ellipse y24+z2100=1,y24+z2100=1,

335.

Ellipse y24+z2100=1,y24+z2100=1,

337.

a. Ellipsoid; b. The third equation; c. x2100+y2400+z2225=1x2100+y2400+z2225=1

339.

a. (x+3)216+(z2)28=1;(x+3)216+(z2)28=1; b. Cylinder centered at (−3,2)(−3,2) with rulings parallel to the y-axis

341.

a. (x3)24+(y2)2(z+2)2=1;(x3)24+(y2)2(z+2)2=1; b. Hyperboloid of one sheet centered at (3,2,−2),(3,2,−2), with the z-axis as its axis of symmetry

343.

a. (x+3)2+y24z23=0;(x+3)2+y24z23=0; b. Elliptic cone centered at (−3,0,0),(−3,0,0), with the z-axis as its axis of symmetry

345.

x 2 4 + y 2 16 + z 2 = 1 x 2 4 + y 2 16 + z 2 = 1

347.

(1,−1,0)(1,−1,0) and (133,4,53)(133,4,53)

349.

x2+z2+4y=0,x2+z2+4y=0, elliptic paraboloid

351.

( 0 , 0 , 100 ) ( 0 , 0 , 100 )

355.

a. x=2z22,y=±z24z2,x=2z22,y=±z24z2, where z[−2,2];z[−2,2];
b.

357.



two ellipses of equations x22+y292=1x22+y292=1 in planes z=±22z=±22

359.

a. x239632+y239632+z239502=1;x239632+y239632+z239502=1;
b.

;
c. The intersection curve is the ellipse of equation x239632+y239632=(2950)(4950)39502,x239632+y239632=(2950)(4950)39502, and the intersection is an ellipse.; d. The intersection curve is the ellipse of equation 2y239632+z239502=1.2y239632+z239502=1.

361.

a.


b. The intersection curve is (x2+z21)3x2z3=0.(x2+z21)3x2z3=0.

Section 2.7 Exercises

363.

( 2 3 , 2 , 3 ) ( 2 3 , 2 , 3 )

365.

( −2 3 , −2 , 3 ) ( −2 3 , −2 , 3 )

367.

( 2 , π 3 , 2 ) ( 2 , π 3 , 2 )

369.

( 3 2 , π 4 , 7 ) ( 3 2 , π 4 , 7 )

371.

A cylinder of equation x2+y2=16,x2+y2=16, with its center at the origin and rulings parallel to the z-axis,

373.

Hyperboloid of two sheets of equation x2+y2z2=1,x2+y2z2=1, with the y-axis as the axis of symmetry,

375.

Cylinder of equation x22x+y2=0,x22x+y2=0, with a center at (1,0,0)(1,0,0) and radius 1,1, with rulings parallel to the z-axis,

377.

Plane of equation x=2,x=2,

379.

z = 3 z = 3

381.

r 2 + z 2 = 9 r 2 + z 2 = 9

383.

r = 16 cos θ , r = 0 r = 16 cos θ , r = 0

385.

( 0 , 0 , −3 ) ( 0 , 0 , −3 )

387.

( 6 , −6 , 6 2 ) ( 6 , −6 , 6 2 )

389.

( 4 , 0 , 90 ° ) ( 4 , 0 , 90 ° )

391.

( 3 , 90 ° , 90 ° ) ( 3 , 90 ° , 90 ° )

393.

Sphere of equation x2+y2+z2=9x2+y2+z2=9 centered at the origin with radius 3,3,

395.

Sphere of equation x2+y2+(z1)2=1x2+y2+(z1)2=1 centered at (0,0,1)(0,0,1) with radius 1,1,

397.

The xy-plane of equation z=0,z=0,

399.

φ=π3φ=π3 or φ=2π3;φ=2π3; Elliptic cone

401.

ρcosφ=6;ρcosφ=6; Plane at z=6z=6

403.

( 10 , π 4 , 0.3218 ) ( 10 , π 4 , 0.3218 )

405.

( 3 2 , π 2 , π 4 ) ( 3 2 , π 2 , π 4 )

407.

( 2 , π 4 , 0 ) ( 2 , π 4 , 0 )

409.

( 8 , π 3 , 0 ) ( 8 , π 3 , 0 )

411.

Cartesian system, {(x,y,z)|0xa,0ya,0za}{(x,y,z)|0xa,0ya,0za}

413.

Cylindrical system, { ( r , θ , z ) | r 2 + z 2 9 , r 0 , π 2 θ 3 π 2 , ( r 3 cos θ , π 2 θ π 2 ) } { ( r , θ , z ) | r 2 + z 2 9 , r 0 , π 2 θ 3 π 2 , ( r 3 cos θ , π 2 θ π 2 ) }

415.

The region is described by the set of points {(r,θ,z)|0r1,0θ2π,r2zr}.{(r,θ,z)|0r1,0θ2π,r2zr}.

417.

( 4000 , 77 ° , 51 ° ) ( 4000 , 77 ° , 51 ° )

419.

43.17°W,43.17°W, 22.91°S22.91°S

421.

a. ρ2=0,ρ2=0, ρ+R2r22Rsinφ=0;ρ+R2r22Rsinφ=0;
c.

Review Exercises

423.

True

425.

False

427.

a. 24,−5;24,−5; b. 85;85; c. Can’t cross a vector with a scalar; d. −29−29

429.

a = ± 2 a = ± 2

431.

1 14 , 2 14 , 3 14 1 14 , 2 14 , 3 14

433.

27 27

435.

x = 1 3 t , y = 3 + 3 t , z = 5 8 t , r ( t ) = ( 1 3 t ) i + 3 ( 1 + t ) j + ( 5 8 t ) k x = 1 3 t , y = 3 + 3 t , z = 5 8 t , r ( t ) = ( 1 3 t ) i + 3 ( 1 + t ) j + ( 5 8 t ) k

437.

x + 3 y + 8 z = 43 x + 3 y + 8 z = 43

439.

x=kx=k trace: k2=y2+z2k2=y2+z2 is a circle, y=ky=k trace: x2z2=k2x2z2=k2 is a hyperbola (or a pair of lines if k=0),k=0), z=kz=k trace: x2y2=k2x2y2=k2 is a hyperbola (or a pair of lines if k=0).k=0). The surface is a cone.

441.

Cylindrical: z=r21,z=r21, spherical: cosφ=ρsin2φ1ρcosφ=ρsin2φ1ρ

443.

x22x+y2+z2=1,x22x+y2+z2=1, sphere

445.

331 N, and 244 N

447.

15 J 15 J

449.

More, 59.0959.09 J

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:

    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction

  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:

    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction

Citation information

© Jul 24, 2025 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.