Calculus Volume 3

# Chapter 2

### Checkpoint

2.1 2.2 2.3

Vectors $a,a,$ $b,b,$ and $ee$ are equivalent.

2.4

$〈3,7〉〈3,7〉$

2.5

a. $‖a‖=52,‖a‖=52,$ b. $b=〈−4,−3〉,b=〈−4,−3〉,$ c. $3a−4b=〈37,15〉3a−4b=〈37,15〉$

2.7

$v=〈−5,53〉v=〈−5,53〉$

2.8

$〈−4585,−1085〉〈−4585,−1085〉$

2.9

$a=16i−11j,a=16i−11j,$ $b=−22i−22jb=−22i−22j$

2.10

Approximately $516516$ mph

2.11 2.12

$5252$

2.13

$z=−4z=−4$

2.14

$(x+2)2+(y−4)2+(z+5)2=52(x+2)2+(y−4)2+(z+5)2=52$

2.15

$x2+(y−2)2+(z+2)2=14x2+(y−2)2+(z+2)2=14$

2.16

The set of points forms the two planes $y=−2y=−2$ and $z=3.z=3.$ 2.17

A cylinder of radius 4 centered on the line with $x=0andz=2.x=0andz=2.$ 2.18

$ST→=〈−1,−9,1〉=−i−9j+kST→=〈−1,−9,1〉=−i−9j+k$

2.19

$〈1310,−5310,8310〉〈1310,−5310,8310〉$

2.20

$v=〈162,122,202〉v=〈162,122,202〉$

2.21

7

2.22

a. $(r·p)q=〈12,−12,12〉;(r·p)q=〈12,−12,12〉;$ b. $‖p‖2=53‖p‖2=53$

2.23

$θ≈0.22θ≈0.22$ rad

2.24

$x=5x=5$

2.25

a. $α≈1.04α≈1.04$ rad; b. $β≈2.58β≈2.58$ rad; c. $γ≈1.40γ≈1.40$ rad

2.26

Sales = $15,685.50; profit =$14,073.15

2.27

$v=p+q,v=p+q,$ where $p=185i+95jp=185i+95j$ and $q=75i−145jq=75i−145j$

2.28

21 knots

2.29

150 ft-lb

2.30

$i−9j+2ki−9j+2k$

2.31

Up (the positive z-direction)

2.32

$−i−i$

2.33

$−k−k$

2.34

$1616$

2.35

$4040$

2.36

$8i−35j+2k8i−35j+2k$

2.37

$〈−3194,−13194,4194〉〈−3194,−13194,4194〉$

2.38

$613613$

2.39

$1717$

2.40

$88$ units3

2.41

No, the triple scalar product is $−4≠0,−4≠0,$ so the three vectors form the adjacent edges of a parallelepiped. They are not coplanar.

2.42

$2020$ N

2.43

Possible set of parametric equations: $x=1+4t,y=−3+t,z=2+6t;x=1+4t,y=−3+t,z=2+6t;$

related set of symmetric equations: $x−14=y+3=z−26x−14=y+3=z−26$

2.44

$x=−1−7t,y=3−t,z=6−2t,0≤t≤1x=−1−7t,y=3−t,z=6−2t,0≤t≤1$

2.45

$107107$

2.46

These lines are skew because their direction vectors are not parallel and there is no point $(x,y,z)(x,y,z)$ that lies on both lines.

2.47

$−2(x−1)+(y+1)+3(z−1)=0−2(x−1)+(y+1)+3(z−1)=0$ or $−2x+y+3z=0−2x+y+3z=0$

2.48

$15211521$

2.49

$x=t,y=7−3t,z=4−2tx=t,y=7−3t,z=4−2t$

2.50

$1.441.44$ rad

2.51

$930930$

2.52 2.53

The traces parallel to the xy-plane are ellipses and the traces parallel to the xz- and yz-planes are hyperbolas. Specifically, the trace in the xy-plane is ellipse $x232+y222=1,x232+y222=1,$ the trace in the xz-plane is hyperbola $x232−z252=1,x232−z252=1,$ and the trace in the yz-plane is hyperbola $y222−z252=1y222−z252=1$ (see the following figure). 2.54

Hyperboloid of one sheet, centered at $(0,0,1)(0,0,1)$

2.55

The rectangular coordinates of the point are $(532,52,4).(532,52,4).$ 2.56

$(82,3π4,−7)(82,3π4,−7)$

2.57

This surface is a cylinder with radius $6.6.$ 2.58 Cartesian: $(−32,−12,3),(−32,−12,3),$ cylindrical: $(1,−5π6,3)(1,−5π6,3)$

2.59

a. This is the set of all points $1313$ units from the origin. This set forms a sphere with radius $13.13.$ b. This set of points forms a half plane. The angle between the half plane and the positive x-axis is $θ=2π3.θ=2π3.$ c. Let $PP$ be a point on this surface. The position vector of this point forms an angle of $φ=π4φ=π4$ with the positive z-axis, which means that points closer to the origin are closer to the axis. These points form a half-cone.

2.60

$(4000,151°,124°)(4000,151°,124°)$

2.61

Spherical coordinates with the origin located at the center of the earth, the z-axis aligned with the North Pole, and the x-axis aligned with the prime meridian

### Section 2.1 Exercises

1.

a. $PQ→=〈2,2〉;PQ→=〈2,2〉;$ b. $PQ→=2i+2jPQ→=2i+2j$

3.

a. $QP→=〈−2,−2〉;QP→=〈−2,−2〉;$ b. $QP→=−2i−2jQP→=−2i−2j$

5.

a. $PQ→+PR→=〈0,6〉;PQ→+PR→=〈0,6〉;$ b. $PQ→+PR→=6jPQ→+PR→=6j$

7.

a. $2PQ→−2PR→=〈8,−4〉;2PQ→−2PR→=〈8,−4〉;$ b. $2PQ→−2PR→=8i−4j2PQ→−2PR→=8i−4j$

9.

a. $〈12,12〉;〈12,12〉;$ b. $12i+12j12i+12j$

11.

$〈35,45〉〈35,45〉$

13.

$Q(0,2)Q(0,2)$

15.

a. $a+b=3i+4j,a+b=3i+4j,$ $a+b=〈3,4〉;a+b=〈3,4〉;$ b. $a−b=i−2j,a−b=i−2j,$ $a−b=〈1,−2〉;a−b=〈1,−2〉;$ c. Answers will vary; d. $2a=4i+2j,2a=4i+2j,$ $2a=〈4,2〉,2a=〈4,2〉,$ $−b=−i−3j,−b=−i−3j,$ $−b=〈−1,−3〉,−b=〈−1,−3〉,$ $2a−b=3i−j,2a−b=3i−j,$ $2a−b=〈3,−1〉2a−b=〈3,−1〉$

17.

$1515$

19.

$λ=−3λ=−3$

21.

a. $a(0)=〈1,0〉,a(0)=〈1,0〉,$ $a(π)=〈−1,0〉;a(π)=〈−1,0〉;$ b. Answers may vary; c. Answers may vary

23.

25.

$v=〈215,285〉v=〈215,285〉$

27.

$v=〈213434,−353434〉v=〈213434,−353434〉$

29.

$u=〈3,1〉u=〈3,1〉$

31.

$u=〈0,5〉u=〈0,5〉$

33.

$u=〈−53,5〉u=〈−53,5〉$

35.

$θ=7π4θ=7π4$

37.

39.

a. $z0=f(x0)+f′(x0);z0=f(x0)+f′(x0);$ b. $u=11+[f′(x0)]2〈1,f′(x0)〉u=11+[f′(x0)]2〈1,f′(x0)〉$

43.

$D(6,1)D(6,1)$

45.

$〈60.62,35〉〈60.62,35〉$

47.

The horizontal and vertical components are $750750$ ft/sec and $1299.041299.04$ ft/sec, respectively.

49.

The magnitude of resultant force is $94.7194.71$ lb; the direction angle is $13.42°.13.42°.$

51.

The magnitude of the third vector is $60.0360.03$ N; the direction angle is $259.38°.259.38°.$

53.

The new ground speed of the airplane is $572.19572.19$ mph; the new direction is $N41.82E.N41.82E.$

55.

$‖T1‖=30.13lb,‖T1‖=30.13lb,$ $‖T2‖=38.35lb‖T2‖=38.35lb$

57.

$‖v1‖=750‖v1‖=750$ lb, $‖v2‖=1299‖v2‖=1299$ lb

59.

The two horizontal and vertical components of the force of tension are $2828$ lb and $4242$ lb, respectively.

### Section 2.2 Exercises

61.

a. $(2,0,5),(2,0,0),(2,3,0),(0,3,0),(0,3,5),(0,0,5);(2,0,5),(2,0,0),(2,3,0),(0,3,0),(0,3,5),(0,0,5);$ b. $3838$

63.

A union of two planes: $y=5y=5$ (a plane parallel to the xz-plane) and $z=6z=6$ (a plane parallel to the xy-plane) 65.

A cylinder of radius $11$ centered on the line $y=1,z=1y=1,z=1$ 67.

$z=1z=1$

69.

$z=−2z=−2$

71.

$(x+1)2+(y−7)2+(z−4)2=16(x+1)2+(y−7)2+(z−4)2=16$

73.

$(x+3)2+(y−3.5)2+(z−8)2=294(x+3)2+(y−3.5)2+(z−8)2=294$

75.

Center $C(0,0,2)C(0,0,2)$ and radius $11$

77.

a. $PQ→=〈−4,−1,2〉;PQ→=〈−4,−1,2〉;$ b. $PQ→=−4i−j+2kPQ→=−4i−j+2k$

79.

a. $PQ→=〈6,−24,24〉;PQ→=〈6,−24,24〉;$ b. $PQ→=6i−24j+24kPQ→=6i−24j+24k$

81.

$Q(5,2,8)Q(5,2,8)$

83.

$a+b=〈−6,4,−3〉,a+b=〈−6,4,−3〉,$ $4a=〈−4,−8,16〉,4a=〈−4,−8,16〉,$ $−5a+3b=〈−10,28,−41〉−5a+3b=〈−10,28,−41〉$

85.

$a+b=〈−1,0,−1〉,a+b=〈−1,0,−1〉,$ $4a=〈0,0,−4〉,4a=〈0,0,−4〉,$ $−5a+3b=〈−3,0,5〉−5a+3b=〈−3,0,5〉$

87.

$‖u−v‖=38,‖u−v‖=38,$ $‖−2u‖=229‖−2u‖=229$

89.

$‖u−v‖=2,‖u−v‖=2,$ $‖−2u‖=213‖−2u‖=213$

91.

$a=35i−45ja=35i−45j$

93.

$〈262i−762j+362k〉〈262i−762j+362k〉$

95.

$〈−26,16,16〉〈−26,16,16〉$

97.

Equivalent vectors

99.

$u=〈7059,−1059,3059〉u=〈7059,−1059,3059〉$

101.

$u=〈−45sint,−45cost,−25〉u=〈−45sint,−45cost,−25〉$

103.

$〈5154,15154,−60154〉〈5154,15154,−60154〉$

105.

$α=−7,α=−7,$ $β=−15β=−15$

111.

a. $F=〈30,40,0〉;F=〈30,40,0〉;$ b. $53°53°$

113.

$D=10kD=10k$

115.

$F4=〈−20,−7,−3〉F4=〈−20,−7,−3〉$

117.

a. $F=−19.6k,F=−19.6k,$ $‖F‖=19.6‖F‖=19.6$ N; b. $T=19.6k,T=19.6k,$ $‖T‖=19.6‖T‖=19.6$ N

119.

a. $F=−294kF=−294k$ N; b. $F1=〈−4933,49,−98〉,F1=〈−4933,49,−98〉,$ $F2=〈−4933,−49,−98〉,F2=〈−4933,−49,−98〉,$ and $F3=〈9833,0,−98〉F3=〈9833,0,−98〉$ (each component is expressed in newtons)

121.

a. $v(1)=〈−0.84,0.54,2〉v(1)=〈−0.84,0.54,2〉$ (each component is expressed in centimeters per second); $‖v(1)‖=2.24‖v(1)‖=2.24$ (expressed in centimeters per second); $a(1)=〈−0.54,−0.84,0〉a(1)=〈−0.54,−0.84,0〉$ (each component expressed in centimeters per second squared);

b. ### Section 2.3 Exercises

123.

6

125.

0

127.

$(a·b)c=〈−11,−11,11〉;(a·b)c=〈−11,−11,11〉;$ $(a·c)b=〈−20,−35,5〉(a·c)b=〈−20,−35,5〉$

129.

$(a·b)c=〈1,0,−2〉;(a·b)c=〈1,0,−2〉;$ $(a·c)b=〈1,0,−1〉(a·c)b=〈1,0,−1〉$

131.

a. $θ=2.82θ=2.82$ rad; b. $θθ$ is not acute.

133.

a. $θ=π4θ=π4$ rad; b. $θθ$ is acute.

135.

$θ=π2θ=π2$

137.

$θ=π3θ=π3$

139.

$θ=2θ=2$ rad

141.

Orthogonal

143.

Not orthogonal

145.

$a=〈−4α3,α〉,a=〈−4α3,α〉,$ where $α≠0α≠0$ is a real number

147.

$u=−αi+αj+βk,u=−αi+αj+βk,$ where $αα$ and $ββ$ are real numbers such that $α2+β2≠0α2+β2≠0$

149.

$α=−6α=−6$

151.

a. $OP→=4i+5j,OP→=4i+5j,$ $OQ→=5i−7j;OQ→=5i−7j;$ b. $105.8°105.8°$

153.

$68.33°68.33°$

155.

u and v are orthogonal; v and w are orthogonal.

161.

a. $cosα=23,cosβ=23,cosα=23,cosβ=23,$ and $cosγ=13;cosγ=13;$ b. $α=48°,α=48°,$ $β=48°,β=48°,$ and $γ=71°γ=71°$

163.

a. $cosα=−130,cosβ=530,cosα=−130,cosβ=530,$ and $cosγ=230;cosγ=230;$ b. $α=101°,α=101°,$ $β=24°,β=24°,$ and $γ=69°γ=69°$

167.

a. $w=〈8029,3229〉;w=〈8029,3229〉;$ b. $compuv=1629compuv=1629$

169.

a. $w=〈2413,0,1613〉;w=〈2413,0,1613〉;$ b. $compuv=813compuv=813$

171.

a. $w=〈2425,−1825〉;w=〈2425,−1825〉;$ b. $q=〈5125,6825〉,q=〈5125,6825〉,$ $v=w+q=〈2425,−1825〉+〈5125,6825〉v=w+q=〈2425,−1825〉+〈5125,6825〉$

173.

a. $22;22;$ b. $109.47°109.47°$

175.

$17N·m17N·m$

177.

1175 $ft·lbft·lb$

179.

4330.13 $ft-lbft-lb$

181.

a. $‖F1+F2‖=52.9‖F1+F2‖=52.9$ lb; b. The direction angles are $α=74.5°,α=74.5°,$ $β=36.7°,β=36.7°,$ and $γ=57.7°.γ=57.7°.$

### Section 2.4 Exercises

183.

a. $u×v=〈0,0,4〉;u×v=〈0,0,4〉;$
b. 185.

a. $u×v=〈6,−4,2〉;u×v=〈6,−4,2〉;$
b. 187.

$−2j−4k−2j−4k$

189.

$w=−136i−736j−236kw=−136i−736j−236k$

191.

$w=−421i−221j−121kw=−421i−221j−121k$

193.

$α=10α=10$

197.

$−3i+11j+2k−3i+11j+2k$

199.

$w=〈−1,et,−e−t〉w=〈−1,et,−e−t〉$

201.

$−26i+17j+9k−26i+17j+9k$

203.

$72°72°$

209.

$77$

211.

a. $56;56;$ b. $562;562;$ c. $56595659$

213.

a. $2;2;$ b. $22$

215.

$v·(u×w)=−1,v·(u×w)=−1,$ $w·(u×v)=1w·(u×v)=1$

217.

$a=〈1,2,3〉,a=〈1,2,3〉,$ $b=〈0,2,5〉,b=〈0,2,5〉,$ $c=〈8,9,2〉;c=〈8,9,2〉;$ $a·(b×c)=−9a·(b×c)=−9$

219.

a. $α=1;α=1;$ b. $h=1,h=1,$ 225.

Yes, $AD→=αAB→+βAC→,AD→=αAB→+βAC→,$ where $α=−1α=−1$ and $β=1.β=1.$

227.

$−k−k$

229.

$〈0,±45,∓25〉〈0,±45,∓25〉$

233.

$w=〈w3−1,w3+1,w3〉,w=〈w3−1,w3+1,w3〉,$ where $w3w3$ is any real number

235.

8.66 ft-lb

237.

559 N

239.

$F=4.8×10−15kNF=4.8×10−15kN$

241.

a. $B(t)=〈2sint5,−2cost5,15〉;B(t)=〈2sint5,−2cost5,15〉;$
b. ### Section 2.5 Exercises

243.

a. $r=〈−3,5,9〉+t〈7,−12,−7〉,r=〈−3,5,9〉+t〈7,−12,−7〉,$ $t∈ℝ;t∈ℝ;$ b. $x=−3+7t,y=5−12t,z=9−7t,x=−3+7t,y=5−12t,z=9−7t,$ $t∈ℝ;t∈ℝ;$ c. $x+37=y−5−12=z−9−7;x+37=y−5−12=z−9−7;$ d. $x=−3+7t,y=5−12t,z=9−7t,x=−3+7t,y=5−12t,z=9−7t,$ $t∈[0,1]t∈[0,1]$

245.

a. $r=〈−1,0,5〉+t〈5,0,−2〉,r=〈−1,0,5〉+t〈5,0,−2〉,$ $t∈ℝ;t∈ℝ;$ b. $x=−1+5t,y=0,z=5−2t,x=−1+5t,y=0,z=5−2t,$ $t∈ℝ;t∈ℝ;$ c. $x+15=z−5−2,y=0;x+15=z−5−2,y=0;$ d. $x=−1+5t,y=0,z=5−2t,x=−1+5t,y=0,z=5−2t,$ $t∈[0,1]t∈[0,1]$

247.

a. $x=1+t,y=−2+2t,z=3+3t,x=1+t,y=−2+2t,z=3+3t,$ $t∈ℝ;t∈ℝ;$ b. $x−11=y+22=z−33;x−11=y+22=z−33;$ c. $(0,−4,0)(0,−4,0)$

249.

a. $x=3+t,y=1,z=5,x=3+t,y=1,z=5,$ $t∈ℝ;t∈ℝ;$ b. $y=1,z=5;y=1,z=5;$ c. The line does not intersect the xy-plane.

251.

a. $P(1,3,5),P(1,3,5),$ $v=〈1,1,4〉;v=〈1,1,4〉;$ b. $33$

253.

$223223$

255.

a. Parallel; b. $2323$

259.

$(−12,6,−4)(−12,6,−4)$

261.

The lines are skew.

263.

The lines are equal.

265.

a. $x=1+t,y=1−t,z=1+2t,x=1+t,y=1−t,z=1+2t,$ $t∈ℝ;t∈ℝ;$ b. For instance, the line passing through $AA$ with direction vector $j:x=1,z=1;j:x=1,z=1;$ c. For instance, the line passing through $AA$ and point $(2,0,0)(2,0,0)$ that belongs to $LL$ is a line that intersects; $L:x−1−1=y−1=z−1L:x−1−1=y−1=z−1$

267.

a. $3x−2y+4z=0;3x−2y+4z=0;$ b. $3x−2y+4z=03x−2y+4z=0$

269.

a. $(x−1)+2(y−2)+3(z−3)=0;(x−1)+2(y−2)+3(z−3)=0;$ b. $x+2y+3z−14=0x+2y+3z−14=0$

271.

a. $n=4i+5j+10k;n=4i+5j+10k;$ b. $(5,0,0),(5,0,0),$ $(0,4,0),(0,4,0),$ and $(0,0,2);(0,0,2);$
c. 273.

a. $n=3i−2j+4k;n=3i−2j+4k;$ b. $(0,0,0);(0,0,0);$
c. 275.

$(3,0,0)(3,0,0)$

277.

$x=−2+2t,y=1−3t,z=3+t,x=−2+2t,y=1−3t,z=3+t,$ $t∈ℝt∈ℝ$

281.

a. $−2y+3z−1=0;−2y+3z−1=0;$ b. $〈0,−2,3〉·〈x−1,y−1,z−1〉=0;〈0,−2,3〉·〈x−1,y−1,z−1〉=0;$ c. $x=0,y=−2t,z=3t,x=0,y=−2t,z=3t,$ $t∈ℝt∈ℝ$

283.

a. Answers may vary; b. $x−11=z−6−1,y=4x−11=z−6−1,y=4$

285.

$2x−5y−3z+15=02x−5y−3z+15=0$

287.

The line intersects the plane at point $P(−3,4,0).P(−3,4,0).$

289.

$16141614$

291.

a. The planes are neither parallel nor orthogonal; b. $62°62°$

293.

a. The planes are parallel.

295.

$1616$

297.

a. $1829;1829;$ b. $P(−5129,13029,6229)P(−5129,13029,6229)$

299.

$4x−3y=04x−3y=0$

301.

a. $v(1)=〈cos1,−sin1,2〉;v(1)=〈cos1,−sin1,2〉;$ b. $(cos1)(x−sin1)−(sin1)(y−cos1)+2(z−2)=0;(cos1)(x−sin1)−(sin1)(y−cos1)+2(z−2)=0;$
c. ### Section 2.6 Exercises

303.

The surface is a cylinder with the rulings parallel to the y-axis. 305.

The surface is a cylinder with rulings parallel to the y-axis. 307.

The surface is a cylinder with rulings parallel to the x-axis. 309.

a. Cylinder; b. The x-axis

311.

a. Hyperboloid of two sheets; b. The x-axis

313.

b.

315.

d.

317.

a.

319.

$−x29+y214+z214=1,−x29+y214+z214=1,$ hyperboloid of one sheet with the x-axis as its axis of symmetry

321.

$−x2103+y22−z210=1,−x2103+y22−z210=1,$ hyperboloid of two sheets with the y-axis as its axis of symmetry

323.

$y=−z25+x25,y=−z25+x25,$ hyperbolic paraboloid with the y-axis as its axis of symmetry

325.

$x215+y23+z25=1,x215+y23+z25=1,$ ellipsoid

327.

$x240+y28−z25=0,x240+y28−z25=0,$ elliptic cone with the z-axis as its axis of symmetry

329.

$x=y22+z23,x=y22+z23,$ elliptic paraboloid with the x-axis as its axis of symmetry

331.

Parabola $y=−x24,y=−x24,$ 333.

Ellipse $y24+z2100=1,y24+z2100=1,$ 335.

Ellipse $y24+z2100=1,y24+z2100=1,$ 337.

a. Ellipsoid; b. The third equation; c. $x2100+y2400+z2225=1x2100+y2400+z2225=1$

339.

a. $(x+3)216+(z−2)28=1;(x+3)216+(z−2)28=1;$ b. Cylinder centered at $(−3,2)(−3,2)$ with rulings parallel to the y-axis

341.

a. $(x−3)24+(y−2)2−(z+2)2=1;(x−3)24+(y−2)2−(z+2)2=1;$ b. Hyperboloid of one sheet centered at $(3,2,−2),(3,2,−2),$ with the z-axis as its axis of symmetry

343.

a. $(x+3)2+y24−z23=0;(x+3)2+y24−z23=0;$ b. Elliptic cone centered at $(−3,0,0),(−3,0,0),$ with the z-axis as its axis of symmetry

345.

$x24+y216+z2=1x24+y216+z2=1$

347.

$(1,−1,0)(1,−1,0)$ and $(133,4,53)(133,4,53)$

349.

$x2+z2+4y=0,x2+z2+4y=0,$ elliptic paraboloid

351.

$(0,0,100)(0,0,100)$

355.

a. $x=2−z22,y=±z24−z2,x=2−z22,y=±z24−z2,$ where $z∈[−2,2];z∈[−2,2];$
b. 357. two ellipses of equations $x22+y292=1x22+y292=1$ in planes $z=±22z=±22$

359.

a. $x239632+y239632+z239502=1;x239632+y239632+z239502=1;$
b. ;
c. The intersection curve is the ellipse of equation $x239632+y239632=(2950)(4950)39502,x239632+y239632=(2950)(4950)39502,$ and the intersection is an ellipse.; d. The intersection curve is the ellipse of equation $2y239632+z239502=1.2y239632+z239502=1.$

361.

a. b. The intersection curve is $(x2+z2−1)3−x2z3=0.(x2+z2−1)3−x2z3=0.$ ### Section 2.7 Exercises

363.

$(23,2,3)(23,2,3)$

365.

$(−23,−2,3)(−23,−2,3)$

367.

$(2,π3,2)(2,π3,2)$

369.

$(32,−π4,7)(32,−π4,7)$

371.

A cylinder of equation $x2+y2=16,x2+y2=16,$ with its center at the origin and rulings parallel to the z-axis, 373.

Hyperboloid of two sheets of equation $−x2+y2−z2=1,−x2+y2−z2=1,$ with the y-axis as the axis of symmetry, 375.

Cylinder of equation $x2−2x+y2=0,x2−2x+y2=0,$ with a center at $(1,0,0)(1,0,0)$ and radius $1,1,$ with rulings parallel to the z-axis, 377.

Plane of equation $x=2,x=2,$ 379.

$z=3z=3$

381.

$r2+z2=9r2+z2=9$

383.

$r=16cosθ,r=0r=16cosθ,r=0$

385.

$(0,0,−3)(0,0,−3)$

387.

$(6,−6,62)(6,−6,62)$

389.

$(4,0,90°)(4,0,90°)$

391.

$(3,90°,90°)(3,90°,90°)$

393.

Sphere of equation $x2+y2+z2=9x2+y2+z2=9$ centered at the origin with radius $3,3,$ 395.

Sphere of equation $x2+y2+(z−1)2=1x2+y2+(z−1)2=1$ centered at $(0,0,1)(0,0,1)$ with radius $1,1,$ 397.

The xy-plane of equation $z=0,z=0,$ 399.

$φ=π3φ=π3$ or $φ=2π3;φ=2π3;$ Elliptic cone

401.

$ρcosφ=6;ρcosφ=6;$ Plane at $z=6z=6$

403.

$(10,π4,0.3218)(10,π4,0.3218)$

405.

$(32,π2,π4)(32,π2,π4)$

407.

$(2,−π4,0)(2,−π4,0)$

409.

$(8,π3,0)(8,π3,0)$

411.

Cartesian system, ${(x,y,z)|0≤x≤a,0≤y≤a,0≤z≤a}{(x,y,z)|0≤x≤a,0≤y≤a,0≤z≤a}$

413.

Cylindrical system, ${(r,θ,z)|r2+z2≤9,r≥3cosθ,0≤θ≤2π}{(r,θ,z)|r2+z2≤9,r≥3cosθ,0≤θ≤2π}$

415.

The region is described by the set of points ${(r,θ,z)|0≤r≤1,0≤θ≤2π,r2≤z≤r}.{(r,θ,z)|0≤r≤1,0≤θ≤2π,r2≤z≤r}.$ 417.

$(4000,−77°,51°)(4000,−77°,51°)$

419.

$43.17°W,43.17°W,$ $22.91°S22.91°S$

421.

a. $ρ=0,ρ=0,$ $ρ+R2−r2−2Rsinφ=0;ρ+R2−r2−2Rsinφ=0;$
c. ### Chapter Review Exercises

423.

True

425.

False

427.

a. $〈24,−5〉;〈24,−5〉;$ b. $85;85;$ c. Can’t dot a vector with a scalar; d. $−29−29$

429.

$a=±2a=±2$

431.

$〈114,−214,−314〉〈114,−214,−314〉$

433.

$2727$

435.

$x=1−3t,y=3+3t,z=5−8t,r(t)=(1−3t)i+3(1+t)j+(5−8t)kx=1−3t,y=3+3t,z=5−8t,r(t)=(1−3t)i+3(1+t)j+(5−8t)k$

437.

$−x+3y+8z=43−x+3y+8z=43$

439.

$x=kx=k$ trace: $k2=y2+z2k2=y2+z2$ is a circle, $y=ky=k$ trace: $x2−z2=k2x2−z2=k2$ is a hyperbola (or a pair of lines if $k=0),k=0),$ $z=kz=k$ trace: $x2−y2=k2x2−y2=k2$ is a hyperbola (or a pair of lines if $k=0).k=0).$ The surface is a cone. 441.

Cylindrical: $z=r2−1,z=r2−1,$ spherical: $cosφ=ρsin2φ−1ρcosφ=ρsin2φ−1ρ$

443.

$x2−2x+y2+z2=1,x2−2x+y2+z2=1,$ sphere

445.

331 N, and 244 N

447.

$15J15J$

449.

More, $59.0959.09$ J