Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Search for key terms or text.

Checkpoint

3.1

r ( 0 ) = j , r ( 1 ) = −2 i + 5 j , r ( −4 ) = 28 i 15 j r ( 0 ) = j , r ( 1 ) = −2 i + 5 j , r ( −4 ) = 28 i 15 j

The domain of r(t)=(t23t)i+(4t+1)jr(t)=(t23t)i+(4t+1)j is all real numbers.

3.3

lim t −2 r ( t ) = 3 i 5 j k lim t −2 r ( t ) = 3 i 5 j k

3.4

r ( t ) = 4 t i + 5 j r ( t ) = 4 t i + 5 j

3.5

r ( t ) = ( 1 + ln t ) i + 5 e t j ( sin t + cos t ) k r ( t ) = ( 1 + ln t ) i + 5 e t j ( sin t + cos t ) k

3.6

d d t [ r ( t ) · r ( t ) ] = 8 e 4 t d d t [ r ( t ) · r ( t ) ] = 8 e 4 t

d d t [ u ( t ) × r ( t ) ] = ( e 2 t ( cos t + 2 sin t ) + cos 2 t ) i + ( e 2 t ( 2 t + 1 ) sin 2 t ) j + ( t cos t + sin t cos 2 t ) k d d t [ u ( t ) × r ( t ) ] = ( e 2 t ( cos t + 2 sin t ) + cos 2 t ) i + ( e 2 t ( 2 t + 1 ) sin 2 t ) j + ( t cos t + sin t cos 2 t ) k

3.7

T ( t ) = 2 t 4 t 2 + 5 i + 2 4 t 2 + 5 j + 1 4 t 2 + 5 k T ( t ) = 2 t 4 t 2 + 5 i + 2 4 t 2 + 5 j + 1 4 t 2 + 5 k

3.8

1 3 [ ( 2 t + 4 ) i + ( 3 t 2 4 t ) j ] d t = 16 i + 10 j 1 3 [ ( 2 t + 4 ) i + ( 3 t 2 4 t ) j ] d t = 16 i + 10 j

3.9

r(t)=4t,4t,3t2,r(t)=4t,4t,3t2, so s=127(1133/2323/2)37.785s=127(1133/2323/2)37.785

3.10

s=5t,s=5t, or t=s/5.t=s/5. Substituting this into r(t)=3cost,3sint,4tr(t)=3cost,3sint,4t gives

r ( s ) = 3 cos ( s 5 ) , 3 sin ( s 5 ) , 4 s 5 , s 0. r ( s ) = 3 cos ( s 5 ) , 3 sin ( s 5 ) , 4 s 5 , s 0.

3.11

κ = 6 101 3 / 2 0.0059 κ = 6 101 3 / 2 0.0059

3.12

N ( 2 ) = 2 2 ( i j ) N ( 2 ) = 2 2 ( i j )

3.13

κ = 4 [ 1 + ( 4 x 4 ) 2 ] 3 / 2 κ = 4 [ 1 + ( 4 x 4 ) 2 ] 3 / 2

At the point x=1,x=1, the curvature is equal to 4. Therefore, the radius of the osculating circle is 14.14.

A graph of this function appears next:

The vertex of this parabola is located at the point (1,3).(1,3). Furthermore, the center of the osculating circle is directly above the vertex. Therefore, the coordinates of the center are (1,134).(1,134). The equation of the osculating circle is

( x 1 ) 2 + ( y 13 4 ) 2 = 1 16 . ( x 1 ) 2 + ( y 13 4 ) 2 = 1 16 .

3.14

v ( t ) = r ( t ) = ( 2 t 3 ) i + 2 j + k a ( t ) = v ( t ) = 2 i v ( t ) = r ( t ) = ( 2 t 3 ) 2 + 2 2 + 1 2 = 4 t 2 12 t + 14 v ( t ) = r ( t ) = ( 2 t 3 ) i + 2 j + k a ( t ) = v ( t ) = 2 i v ( t ) = r ( t ) = ( 2 t 3 ) 2 + 2 2 + 1 2 = 4 t 2 12 t + 14

The units for velocity and speed are feet per second, and the units for acceleration are feet per second squared.

3.15
  1. v(t)=r'(t)=4i+2tja(t)=v'(t)=2jaT=2tt2+4,aN=44+t2v(t)=r'(t)=4i+2tja(t)=v'(t)=2jaT=2tt2+4,aN=44+t2
  2. aT(−3)=61313,aN(−3)=21313aT(−3)=61313,aN(−3)=21313
3.16

967.15 m

3.17

a = 1.224 × 10 9 m 1,224,000 km a = 1.224 × 10 9 m 1,224,000 km

Section 3.1 Exercises

1.

f ( t ) = 3 sec t , g ( t ) = 2 tan t f ( t ) = 3 sec t , g ( t ) = 2 tan t

3.


5.

a. 12,32,12,32, b. 12,32,12,32, c. Yes, the limit as t approaches π/3π/3 is equal to r(π/3),r(π/3), d.

7.

a. eπ/4,22,ln(π4);eπ/4,22,ln(π4); b. eπ/4,22,ln(π4);eπ/4,22,ln(π4); c. Yes

9.

e π / 2 , 1 , ln ( π 2 ) e π / 2 , 1 , ln ( π 2 )

11.

2 e 2 i + 2 e 4 j + 2 k 2 e 2 i + 2 e 4 j + 2 k

13.

The limit does not exist because the limit of ln(t1)ln(t1) as t approaches infinity does not exist.

15.

t>0,t(2k+1)π2,t>0,t(2k+1)π2, where k is an integer

17.

t>3,tnπ,t>3,tnπ, where n is an integer

19.


21.

All t such that t(1,)t(1,)

23.

y=2x3,y=2x3, a variation of the cube-root function

25.

x2+y2=9,x2+y2=9, a circle centered at (0,0)(0,0) with radius 3, and a counterclockwise orientation

27.


29.



Find a vector-valued function that traces out the given curve in the indicated direction.

31.

For left to right, y=x2,y=x2, where t increases

33.

( 50 , 0 , 0 ) ( 50 , 0 , 0 )

35.


37.


39.

One possibility is r(t)=costi+sintj+sin(4t)k.r(t)=costi+sintj+sin(4t)k. By increasing the coefficient of t in the third component, the number of turning points will increase.

Section 3.2 Exercises

41.

3 t 2 , 6 t , 1 2 t 2 3 t 2 , 6 t , 1 2 t 2

43.

e t , 3 cos ( 3 t ) , 5 t e t , 3 cos ( 3 t ) , 5 t

45.

0 , 0 , 0 0 , 0 , 0

47.

−1 ( t + 1 ) 2 , 1 1 + t 2 , 3 t −1 ( t + 1 ) 2 , 1 1 + t 2 , 3 t

49.

0 , 12 cos ( 3 t ) , cos t t sin t 0 , 12 cos ( 3 t ) , cos t t sin t

51.

1 2 1 , −1 , 0 1 2 1 , −1 , 0

53.

1 1060.5625 6 , 3 4 , 32 1 1060.5625 6 , 3 4 , 32

55.

1 9 sin 2 ( 3 t ) + 144 cos 2 ( 4 t ) 0 , −3 sin ( 3 t ) , 12 cos ( 4 t ) 1 9 sin 2 ( 3 t ) + 144 cos 2 ( 4 t ) 0 , −3 sin ( 3 t ) , 12 cos ( 4 t )

57.

T ( t ) = −12 13 sin ( 4 t ) i + 12 13 cos ( 4 t ) j + 5 13 k T ( t ) = −12 13 sin ( 4 t ) i + 12 13 cos ( 4 t ) j + 5 13 k

59.

2 t , 4 t 3 , −8 t 7 2 t , 4 t 3 , −8 t 7

61.

sin ( t ) + 2 t e t 4 t 3 cos ( t ) + t cos ( t ) + t 2 e t + t 4 sin ( t ) sin ( t ) + 2 t e t 4 t 3 cos ( t ) + t cos ( t ) + t 2 e t + t 4 sin ( t )

63.

900 t 7 + 16 t 900 t 7 + 16 t

65.

  1. Undefined or infinite
67.

r'(t)=bωsin(ωt)i+bωcos(ωt)j.r'(t)=bωsin(ωt)i+bωcos(ωt)j. To show orthogonality, note that r'(t)·r(t)=0.r'(t)·r(t)=0.

69.

0 i + 2 j + 4 t k 0 i + 2 j + 4 t k

71.

1 3 ( 10 3 / 2 1 ) 1 3 ( 10 3 / 2 1 )

73.


v(t)=kv(t)·v(t)=kddt(v(t)·v(t))=ddtk=0v(t)·v'(t)+v'(t)·v(t)=02v(t)·v'(t)=0v(t)·v'(t)=0.v(t)=kv(t)·v(t)=kddt(v(t)·v(t))=ddtk=0v(t)·v'(t)+v'(t)·v(t)=02v(t)·v'(t)=0v(t)·v'(t)=0.
The last statement implies that the velocity and acceleration are perpendicular or orthogonal.

75.

v(t)=1sint,1cost,v(t)=1sint,1cost, speed=v(t)=32(sint+cost)speed=v(t)=32(sint+cost)

77.

x = t + 1 , y = - t + 1 , z = 0 x = t + 1 , y = - t + 1 , z = 0

79.

r(t)=18,9r(t)=18,9 at t=3t=3

81.

161 161

83.

v ( t ) = sin t , cos t , 1 v ( t ) = sin t , cos t , 1

85.

a ( t ) = cos t i sin t j + 0 j a ( t ) = cos t i sin t j + 0 j

87.

v ( t ) = sin t , 2 cos t , 0 v ( t ) = sin t , 2 cos t , 0

89.

a ( t ) = 2 2 , 2 , 0 a ( t ) = 2 2 , 2 , 0

91.

v ( t ) = sec 4 t + sec 2 t tan 2 t = sec 2 t ( sec 2 t + tan 2 t ) v ( t ) = sec 4 t + sec 2 t tan 2 t = sec 2 t ( sec 2 t + tan 2 t )

93.

3 - 2 2 3 - 2 2

95.

0 , 2 sin t ( t 1 t ) 2 cos t ( 1 + 1 t 2 ) , 2 sin t ( 1 + 1 t 2 ) + 2 cos t ( t 2 t ) 0 , 2 sin t ( t 1 t ) 2 cos t ( 1 + 1 t 2 ) , 2 sin t ( 1 + 1 t 2 ) + 2 cos t ( t 2 t )

97.

T ( t ) = t 2 t 4 + 1 , −1 t 4 + 1 T ( t ) = t 2 t 4 + 1 , −1 t 4 + 1

99.

T ( t ) = 1 3 1 , 2 , 2 T ( t ) = 1 3 1 , 2 , 2

101.

3 4 i + ln ( 2 ) j + ( 1 1 e ) j 3 4 i + ln ( 2 ) j + ( 1 1 e ) j

Section 3.3 Exercises

103.

8 5 8 5

105.

1 54 ( 37 3 / 2 1 ) 1 54 ( 37 3 / 2 1 )

107.

Length =2π=2π

109.

6 π 6 π

111.

e 1 e e 1 e

113.

T(0)=j,T(0)=j, N(0)=iN(0)=i

115.

T ( t ) = 26,costsint6, cost+sint6 T ( t ) = 26,costsint6, cost+sint6

117.

N 0 = 0 , - 2 2 , 2 2 N 0 = 0 , - 2 2 , 2 2

119.

T ( t ) = 1 4 t 2 + 2 < 1 , 2 t , 1 > T ( t ) = 1 4 t 2 + 2 < 1 , 2 t , 1 >

121.

T ( t ) = 1 100 t 2 + 13 ( 3 i + 10 t j + 2 k ) T ( t ) = 1 100 t 2 + 13 ( 3 i + 10 t j + 2 k )

123.

T ( t ) = 1 9 t 4 + 76 t 2 + 16 ( [ 3 t 2 4 ] i + 10 t j ) T ( t ) = 1 9 t 4 + 76 t 2 + 16 ( [ 3 t 2 4 ] i + 10 t j )

125.

N ( t ) = sin t , 0 , cos t N ( t ) = sin t , 0 , cos t

127.

Arc-length function: s(t)=5t;s(t)=5t; r as a parameter of s: r(s)=(33s5)i+4s5jr(s)=(33s5)i+4s5j

129.

r ( s ) = ( 1 + s 2 ) sin ( ln ( 1 + s 2 ) ) i + ( 1 + s 2 ) cos [ ln ( 1 + s 2 ) ] j r ( s ) = ( 1 + s 2 ) sin ( ln ( 1 + s 2 ) ) i + ( 1 + s 2 ) cos [ ln ( 1 + s 2 ) ] j

131.

The maximum value of the curvature occurs at x=1.x=1.

133.

1 2 1 2

135.

κ 49.477 ( 17 + 144 t 2 ) 3 / 2 κ 49.477 ( 17 + 144 t 2 ) 3 / 2

137.

1 2 2 1 2 2

139.

The curvature approaches zero.

141.

y=6x+πy=6x+π and x+6y=6πx+6y=6π

143.

x + 2 z = π 2 x + 2 z = π 2

145.

a 4 b 4 ( b 4 x 2 + a 4 y 2 ) 3 / 2 a 4 b 4 ( b 4 x 2 + a 4 y 2 ) 3 / 2

147.

10 10 3 10 10 3

149.

1 4 ln 17 + 4 + 17 4 . 647 1 4 ln 17 + 4 + 17 4 . 647

151.

The curvature is decreasing over this interval.

153.

κ = 6 x 2 / 5 ( 25 + 4 x 6 / 5 ) κ = 6 x 2 / 5 ( 25 + 4 x 6 / 5 )

Section 3.4 Exercises

155.

v ( t ) = ( 6 t ) i + ( 2 cos ( t ) ) j v ( t ) = ( 6 t ) i + ( 2 cos ( t ) ) j

157.

v(t)=−3sint,3cost,2t,v(t)=−3sint,3cost,2t, a(t)=−3cost,−3sint,2,a(t)=−3cost,−3sint,2, speed=9+4t2speed=9+4t2

159.

v(t)=−2sintj+3costk,v(t)=−2sintj+3costk, a(t)=−2costj3sintk,a(t)=−2costj3sintk, speed=4sin2t+9cos2tspeed=4sin2t+9cos2t

161.

v(t)=etietj,v(t)=etietj, a(t)=eti+etj,a(t)=eti+etj, speed = v(t)=e2t+e−2tv(t)=e2t+e−2t

163.

t = 4 t = 4

165.

v ( t ) = ( ω ω cos ( ω t ) ) i + ( ω sin ( ω t ) ) j , v ( t ) = ( ω ω cos ( ω t ) ) i + ( ω sin ( ω t ) ) j ,
a ( t ) = ( ω 2 sin ( ω t ) ) i + ( ω 2 cos ( ω t ) ) j , a ( t ) = ( ω 2 sin ( ω t ) ) i + ( ω 2 cos ( ω t ) ) j ,
speed = ω 2 2 ω 2 cos ( ω t ) + ω 2 cos 2 ( ω t ) + ω 2 sin 2 ( ω t ) = 2 ω 2 ( 1 cos ( ω t ) ) speed = ω 2 2 ω 2 cos ( ω t ) + ω 2 cos 2 ( ω t ) + ω 2 sin 2 ( ω t ) = 2 ω 2 ( 1 cos ( ω t ) )

167.

v ( t ) = 9 + 4 t 2 v ( t ) = 9 + 4 t 2

169.

v ( t ) = e −5 t ( cos t 5 sin t ) , e −5 t ( sin t + 5 cos t ) , −20 e −5 t v ( t ) = e −5 t ( cos t 5 sin t ) , e −5 t ( sin t + 5 cos t ) , −20 e −5 t

171.

a(t)=e−5t(sint5cost)5e−5t(cost5sint),a(t)=e−5t(sint5cost)5e−5t(cost5sint), e−5t(cost5sint)+5e−5t(sint+5cost),100e−5te−5t(cost5sint)+5e−5t(sint+5cost),100e−5t

173.

44.185 sec

175.

t=88.37t=88.37 sec

177.

88.37 sec

179.

The range is approximately 886.29 m.

181.

v=42.16v=42.16 m/sec

183.

r ( t ) = 0 i + ( 1 6 t 3 + 4.5 t 14 3 ) j + ( t 3 6 1 2 t + 1 3 ) k r ( t ) = 0 i + ( 1 6 t 3 + 4.5 t 14 3 ) j + ( t 3 6 1 2 t + 1 3 ) k

185.

aT=0,aT=0, aN=aω2aN=aω2

187.

aT=3et,aT=3et, aN=2etaN=2et

189.

aT=2t,aT=2t, aN=2aN=2

191.

aT6t+12t31+t4+t2,aT6t+12t31+t4+t2, aN=61+4t2+t41+t2+t4aN=61+4t2+t41+t2+t4

193.

aT=0,aT=0, aN=12π2aN=12π2

195.

r ( t ) = ( −1 m cos t + c + 1 m ) i + ( sin t m + ( v 0 + 1 m ) t ) j r ( t ) = ( −1 m cos t + c + 1 m ) i + ( sin t m + ( v 0 + 1 m ) t ) j

197.

10.94 km/sec

201.

a T = 0.43 m/sec 2 , a T = 0.43 m/sec 2 ,
a N = 2.46 m/sec 2 a N = 2.46 m/sec 2

Review Exercises

203.

False, ddt[u(t)×u(t)]=0ddt[u(t)×u(t)]=0

205.

False, it is |r(t)||r(t)|

207.

t<4,t<4, tnπ2tnπ2

209.


211.

r ( t ) = t , 2 t 2 8 , −2 t 2 8 r ( t ) = t , 2 t 2 8 , −2 t 2 8

213.

u(t)=2t,2,20t4,u(t)=2t,2,20t4, u(t)=2,0,80t3,u(t)=2,0,80t3, ddt[u(t)×u(t)]=−480t3160t4,24+75t2,12+4t,ddt[u(t)×u(t)]=−480t3160t4,24+75t2,12+4t, ddt[u(t)×u(t)]=480t3+160t4,−2475t2,−124t,ddt[u(t)×u(t)]=480t3+160t4,−2475t2,−124t, ddt[u(t)·u(t)]=720t89600t3+6t2+4,ddt[u(t)·u(t)]=720t89600t3+6t2+4, unit tangent vector: T(t)=2t400t8+4t2+4i+2400t8+4t2+4j+20t4400t8+4t2+4kT(t)=2t400t8+4t2+4i+2400t8+4t2+4j+20t4400t8+4t2+4k

215.

ln ( 4 ) 2 2 i + 2 j + 2 ( 2 + 2 ) π k ln ( 4 ) 2 2 i + 2 j + 2 ( 2 + 2 ) π k

217.

37 2 + 1 12 sinh −1 ( 6 ) 37 2 + 1 12 sinh −1 ( 6 )

219.

r ( t ( s ) ) = cos ( 2 s 65 ) i + 8 s 65 j sin ( 2 s 65 ) k r ( t ( s ) ) = cos ( 2 s 65 ) i + 8 s 65 j sin ( 2 s 65 ) k

221.

e 2 t ( e 2 t + 1 ) 2 e 2 t ( e 2 t + 1 ) 2

223.

aT=e2t1+e2t,aT=e2t1+e2t, aN=2e2t+4e2tsintcost+11+e2taN=2e2t+4e2tsintcost+11+e2t

225.

v(t)=2t,1t,πcos(πt)v(t)=2t,1t,πcos(πt) m/sec, a(t)=2,1t2,π2sin(πt)m/sec2,a(t)=2,1t2,π2sin(πt)m/sec2, speed=4t2+1t2+π2cos2(πt)speed=4t2+1t2+π2cos2(πt) m/sec; at t=1,t=1, r(1)=1,0,0r(1)=1,0,0 m, v(1)=2,1,–πv(1)=2,1,–π m/sec, a(1)=2,−1,0a(1)=2,−1,0 m/sec2, and speed=5+π2speed=5+π2 m/sec

227.

r(t)=v0tg2t2j,r(t)=v0tg2t2j, r(t)=v0(cosθ)t,v0(sinθ)t,g2t2r(t)=v0(cosθ)t,v0(sinθ)t,g2t2

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:

    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction

  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:

    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction

Citation information

© Jul 24, 2025 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.