Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Checkpoint

3.1

r ( 0 ) = j , r ( 1 ) = −2 i + 5 j , r ( −4 ) = 28 i 15 j r ( 0 ) = j , r ( 1 ) = −2 i + 5 j , r ( −4 ) = 28 i 15 j

The domain of r(t)=(t23t)i+(4t+1)jr(t)=(t23t)i+(4t+1)j is all real numbers.

3.3

lim t −2 r ( t ) = 3 i 5 j k lim t −2 r ( t ) = 3 i 5 j k

3.4

r ( t ) = 4 t i + 5 j r ( t ) = 4 t i + 5 j

3.5

r ( t ) = ( 1 + ln t ) i + 5 e t j ( sin t + cos t ) k r ( t ) = ( 1 + ln t ) i + 5 e t j ( sin t + cos t ) k

3.6

d d t [ r ( t ) · r ( t ) ] = 8 e 4 t d d t [ r ( t ) · r ( t ) ] = 8 e 4 t

d d t [ u ( t ) × r ( t ) ] = ( e 2 t ( cos t + 2 sin t ) + cos 2 t ) i + ( e 2 t ( 2 t + 1 ) sin 2 t ) j + ( t cos t + sin t cos 2 t ) k d d t [ u ( t ) × r ( t ) ] = ( e 2 t ( cos t + 2 sin t ) + cos 2 t ) i + ( e 2 t ( 2 t + 1 ) sin 2 t ) j + ( t cos t + sin t cos 2 t ) k

3.7

T ( t ) = 2 t 4 t 2 + 5 i + 2 4 t 2 + 5 j + 1 4 t 2 + 5 k T ( t ) = 2 t 4 t 2 + 5 i + 2 4 t 2 + 5 j + 1 4 t 2 + 5 k

3.8

1 3 [ ( 2 t + 4 ) i + ( 3 t 2 4 t ) j ] d t = 16 i + 10 j 1 3 [ ( 2 t + 4 ) i + ( 3 t 2 4 t ) j ] d t = 16 i + 10 j

3.9

r(t)=4t,4t,3t2,r(t)=4t,4t,3t2, so s=127(1133/2323/2)37.785s=127(1133/2323/2)37.785

3.10

s=5t,s=5t, or t=s/5.t=s/5. Substituting this into r(t)=3cost,3sint,4tr(t)=3cost,3sint,4t gives

r ( s ) = 3 cos ( s 5 ) , 3 sin ( s 5 ) , 4 s 5 , s 0. r ( s ) = 3 cos ( s 5 ) , 3 sin ( s 5 ) , 4 s 5 , s 0.

3.11

κ = 6 101 3 / 2 0.0059 κ = 6 101 3 / 2 0.0059

3.12

N ( 2 ) = 2 2 ( i j ) N ( 2 ) = 2 2 ( i j )

3.13

κ = 4 [ 1 + ( 4 x 4 ) 2 ] 3 / 2 κ = 4 [ 1 + ( 4 x 4 ) 2 ] 3 / 2

At the point x=1,x=1, the curvature is equal to 4. Therefore, the radius of the osculating circle is 14.14.

A graph of this function appears next:

This figure is the graph of the function y = 2x^2-4x+5. The curve is a parabola opening up with vertex at (1, 3).

The vertex of this parabola is located at the point (1,3).(1,3). Furthermore, the center of the osculating circle is directly above the vertex. Therefore, the coordinates of the center are (1,134).(1,134). The equation of the osculating circle is

( x 1 ) 2 + ( y 13 4 ) 2 = 1 16 . ( x 1 ) 2 + ( y 13 4 ) 2 = 1 16 .

3.14

v ( t ) = r ( t ) = ( 2 t 3 ) i + 2 j + k a ( t ) = v ( t ) = 2 i v ( t ) = r ( t ) = ( 2 t 3 ) 2 + 2 2 + 1 2 = 4 t 2 12 t + 14 v ( t ) = r ( t ) = ( 2 t 3 ) i + 2 j + k a ( t ) = v ( t ) = 2 i v ( t ) = r ( t ) = ( 2 t 3 ) 2 + 2 2 + 1 2 = 4 t 2 12 t + 14

The units for velocity and speed are feet per second, and the units for acceleration are feet per second squared.

3.15
  1. v(t)=r'(t)=4i+2tja(t)=v'(t)=2jaT=2tt2+4,aN=44+t2v(t)=r'(t)=4i+2tja(t)=v'(t)=2jaT=2tt2+4,aN=44+t2
  2. aT(−3)=61313,aN(−3)=21313aT(−3)=61313,aN(−3)=21313
3.16

967.15 m

3.17

a = 1.224 × 10 9 m 1,224,000 km a = 1.224 × 10 9 m 1,224,000 km

Section 3.1 Exercises

1.

f ( t ) = 3 sec t , g ( t ) = 2 tan t f ( t ) = 3 sec t , g ( t ) = 2 tan t

3.


This figure is the graph of the function r(t) = 3sect i + 2tant j. The graph has two slant asymptotes. They are diagonal and pass through the origin. The curve has two parts, one to the left of the y-axis with a hyperbolic bend. Also, there is a second part of the curve to the right of the y-axis with a hyperbolic bend. The orientation is represented by arrows on the curve. Both curves have orientation that is rising.
5.

a. 12,32,12,32, b. 12,32,12,32, c. Yes, the limit as t approaches π/3π/3 is equal to r(π/3),r(π/3), d.

This figure is a graph of a circle centered at the origin. The circle has radius of 1 and has counter-clockwise orientation with arrows representing the orientation.
7.

a. eπ/4,22,ln(π4);eπ/4,22,ln(π4); b. eπ/4,22,ln(π4);eπ/4,22,ln(π4); c. Yes

9.

e π / 2 , 1 , ln ( π 2 ) e π / 2 , 1 , ln ( π 2 )

11.

2 e 2 i + 2 e 4 j + 2 k 2 e 2 i + 2 e 4 j + 2 k

13.

The limit does not exist because the limit of ln(t1)ln(t1) as t approaches infinity does not exist.

15.

t>0,t(2k+1)π2,t>0,t(2k+1)π2, where k is an integer

17.

t>3,tnπ,t>3,tnπ, where n is an integer

19.


This figure has two graphs. The first graph is labeled “cross section” and is a circle centered at the origin with radius of 1. It has counter-clockwise orientation. The section graph is labeled “side view” and is a 3 dimensional helix. The helix has counterclockwise orientation.
21.

All t such that t(1,)t(1,)

23.

y=2x3,y=2x3, a variation of the cube-root function

This figure is the graph of y = 2 times the cube root of x. It is an increasing function passing through the origin. The curve becomes more vertical near the origin. It has orientation to the right represented with arrows on the curve.
25.

x2+y2=9,x2+y2=9, a circle centered at (0,0)(0,0) with radius 3, and a counterclockwise orientation

This figure is the graph of x^2 + y^2 = 9. It is a circle centered at the origin with radius 3. It has orientation counter-clockwise represented with arrows on the curve.
27.


This figure is the graph of r(t) = 2cost^2 i + (2 – the square root of t) j. The curve spirals in the first quadrant, touching the y-axis. As the curve gets closer to the x-axis, the spirals become tighter. It has the look of a spring being compressed. The arrows on the curve represent orientation going downward.
29.


This figure has two graphs. The first is 3 dimensional and is a curve making a figure eight on its side inside of a box. The box represents the first octant. The second graph is 2 dimensional. It represents the same curve from a “view in the yt plane”. The horizontal axis is labeled “t”. The curve is connected and crosses over itself in the first quadrant resembling a figure eight.


Find a vector-valued function that traces out the given curve in the indicated direction.

31.

For left to right, y=x2,y=x2, where t increases

33.

( 50 , 0 , 0 ) ( 50 , 0 , 0 )

35.


This figure is a graph in the 3 dimensional coordinate system. It is a curve starting at the middle of the box and curving towards the upper left corner The box represents an octant of the coordinate system.
37.


This figure has two graphs. The first is 3 dimensional and is a connected curve with counter-clockwise orientation inside of a box. The second graph is 3 dimensional. It represents the same curve from different view of the box. From the side of the box the curve is connected and has depth to it.
39.

One possibility is r(t)=costi+sintj+sin(4t)k.r(t)=costi+sintj+sin(4t)k. By increasing the coefficient of t in the third component, the number of turning points will increase.

This figure is a 3 dimensional graph. It is a connected curve inside of a box. The curve has orientation. As the orientation travels around the curve, it does go up and down in depth.

Section 3.2 Exercises

41.

3 t 2 , 6 t , 1 2 t 2 3 t 2 , 6 t , 1 2 t 2

43.

e t , 3 cos ( 3 t ) , 5 t e t , 3 cos ( 3 t ) , 5 t

45.

0 , 0 , 0 0 , 0 , 0

47.

−1 ( t + 1 ) 2 , 1 1 + t 2 , 3 t −1 ( t + 1 ) 2 , 1 1 + t 2 , 3 t

49.

0 , 12 cos ( 3 t ) , cos t t sin t 0 , 12 cos ( 3 t ) , cos t t sin t

51.

1 2 1 , −1 , 0 1 2 1 , −1 , 0

53.

1 1060.5625 6 , 3 4 , 32 1 1060.5625 6 , 3 4 , 32

55.

1 9 sin 2 ( 3 t ) + 144 cos 2 ( 4 t ) 0 , −3 sin ( 3 t ) , 12 cos ( 4 t ) 1 9 sin 2 ( 3 t ) + 144 cos 2 ( 4 t ) 0 , −3 sin ( 3 t ) , 12 cos ( 4 t )

57.

T ( t ) = −12 13 sin ( 4 t ) i + 12 13 cos ( 4 t ) j + 5 13 k T ( t ) = −12 13 sin ( 4 t ) i + 12 13 cos ( 4 t ) j + 5 13 k

59.

2 t , 4 t 3 , −8 t 7 2 t , 4 t 3 , −8 t 7

61.

sin ( t ) + 2 t e t 4 t 3 cos ( t ) + t cos ( t ) + t 2 e t + t 4 sin ( t ) sin ( t ) + 2 t e t 4 t 3 cos ( t ) + t cos ( t ) + t 2 e t + t 4 sin ( t )

63.

900 t 7 + 16 t 900 t 7 + 16 t

65.

  1. This figure is a graph of a curve in 3 dimensions. The curve has asymptotes and from the above view, the curve resembles the secant function.
  2. Undefined or infinite
67.

r'(t)=bωsin(ωt)i+bωcos(ωt)j.r'(t)=bωsin(ωt)i+bωcos(ωt)j. To show orthogonality, note that r'(t)·r(t)=0.r'(t)·r(t)=0.

69.

0 i + 2 j + 4 t k 0 i + 2 j + 4 t k

71.

1 3 ( 10 3 / 2 1 ) 1 3 ( 10 3 / 2 1 )

73.


v(t)=kv(t)·v(t)=kddt(v(t)·v(t))=ddtk=0v(t)·v'(t)+v'(t)·v(t)=02v(t)·v'(t)=0v(t)·v'(t)=0.v(t)=kv(t)·v(t)=kddt(v(t)·v(t))=ddtk=0v(t)·v'(t)+v'(t)·v(t)=02v(t)·v'(t)=0v(t)·v'(t)=0.
The last statement implies that the velocity and acceleration are perpendicular or orthogonal.

75.

v(t)=1sint,1cost,v(t)=1sint,1cost, speed=v(t)=32(sint+cost)speed=v(t)=32(sint+cost)

77.

x = t + 1 , y = - t + 1 , z = 0 x = t + 1 , y = - t + 1 , z = 0

79.

r(t)=18,9r(t)=18,9 at t=3t=3

81.

161 161

83.

v ( t ) = sin t , cos t , 1 v ( t ) = sin t , cos t , 1

85.

a ( t ) = cos t i sin t j + 0 j a ( t ) = cos t i sin t j + 0 j

87.

v ( t ) = sin t , 2 cos t , 0 v ( t ) = sin t , 2 cos t , 0

89.

a ( t ) = 2 2 , 2 , 0 a ( t ) = 2 2 , 2 , 0

91.

v ( t ) = sec 4 t + sec 2 t tan 2 t = sec 2 t ( sec 2 t + tan 2 t ) v ( t ) = sec 4 t + sec 2 t tan 2 t = sec 2 t ( sec 2 t + tan 2 t )

93.

3 - 2 2 3 - 2 2

95.

0 , 2 sin t ( t 1 t ) 2 cos t ( 1 + 1 t 2 ) , 2 sin t ( 1 + 1 t 2 ) + 2 cos t ( t 2 t ) 0 , 2 sin t ( t 1 t ) 2 cos t ( 1 + 1 t 2 ) , 2 sin t ( 1 + 1 t 2 ) + 2 cos t ( t 2 t )

97.

T ( t ) = t 2 t 4 + 1 , −1 t 4 + 1 T ( t ) = t 2 t 4 + 1 , −1 t 4 + 1

99.

T ( t ) = 1 3 1 , 2 , 2 T ( t ) = 1 3 1 , 2 , 2

101.

3 4 i + ln ( 2 ) j + ( 1 1 e ) j 3 4 i + ln ( 2 ) j + ( 1 1 e ) j

Section 3.3 Exercises

103.

8 5 8 5

105.

1 54 ( 37 3 / 2 1 ) 1 54 ( 37 3 / 2 1 )

107.

Length =2π=2π

109.

6 π 6 π

111.

e 1 e e 1 e

113.

T(0)=j,T(0)=j, N(0)=iN(0)=i

115.

T ( t ) = 26,costsint6, cost+sint6 T ( t ) = 26,costsint6, cost+sint6

117.

N 0 = 0 , - 2 2 , 2 2 N 0 = 0 , - 2 2 , 2 2

119.

T ( t ) = 1 4 t 2 + 2 < 1 , 2 t , 1 > T ( t ) = 1 4 t 2 + 2 < 1 , 2 t , 1 >

121.

T ( t ) = 1 100 t 2 + 13 ( 3 i + 10 t j + 2 k ) T ( t ) = 1 100 t 2 + 13 ( 3 i + 10 t j + 2 k )

123.

T ( t ) = 1 9 t 4 + 76 t 2 + 16 ( [ 3 t 2 4 ] i + 10 t j ) T ( t ) = 1 9 t 4 + 76 t 2 + 16 ( [ 3 t 2 4 ] i + 10 t j )

125.

N ( t ) = sin t , 0 , cos t N ( t ) = sin t , 0 , cos t

127.

Arc-length function: s(t)=5t;s(t)=5t; r as a parameter of s: r(s)=(33s5)i+4s5jr(s)=(33s5)i+4s5j

129.

r ( s ) = ( 1 + s 2 ) sin ( ln ( 1 + s 2 ) ) i + ( 1 + s 2 ) cos [ ln ( 1 + s 2 ) ] j r ( s ) = ( 1 + s 2 ) sin ( ln ( 1 + s 2 ) ) i + ( 1 + s 2 ) cos [ ln ( 1 + s 2 ) ] j

131.

The maximum value of the curvature occurs at x=1.x=1.

133.

1 2 1 2

135.

κ 49.477 ( 17 + 144 t 2 ) 3 / 2 κ 49.477 ( 17 + 144 t 2 ) 3 / 2

137.

1 2 2 1 2 2

139.

The curvature approaches zero.

141.

y=6x+πy=6x+π and x+6y=6πx+6y=6π

143.

x + 2 z = π 2 x + 2 z = π 2

145.

a 4 b 4 ( b 4 x 2 + a 4 y 2 ) 3 / 2 a 4 b 4 ( b 4 x 2 + a 4 y 2 ) 3 / 2

147.

10 10 3 10 10 3

149.

1 4 ln 17 + 4 + 17 4 . 647 1 4 ln 17 + 4 + 17 4 . 647

151.

The curvature is decreasing over this interval.

153.

κ = 6 x 2 / 5 ( 25 + 4 x 6 / 5 ) κ = 6 x 2 / 5 ( 25 + 4 x 6 / 5 )

Section 3.4 Exercises

155.

v ( t ) = ( 6 t ) i + ( 2 cos ( t ) ) j v ( t ) = ( 6 t ) i + ( 2 cos ( t ) ) j

157.

v(t)=−3sint,3cost,2t,v(t)=−3sint,3cost,2t, a(t)=−3cost,−3sint,2,a(t)=−3cost,−3sint,2, speed=9+4t2speed=9+4t2

159.

v(t)=−2sintj+3costk,v(t)=−2sintj+3costk, a(t)=−2costj3sintk,a(t)=−2costj3sintk, speed=4sin2t+9cos2tspeed=4sin2t+9cos2t

161.

v(t)=etietj,v(t)=etietj, a(t)=eti+etj,a(t)=eti+etj, speed = v(t)=e2t+e−2tv(t)=e2t+e−2t

163.

t = 4 t = 4

165.

v ( t ) = ( ω ω cos ( ω t ) ) i + ( ω sin ( ω t ) ) j , v ( t ) = ( ω ω cos ( ω t ) ) i + ( ω sin ( ω t ) ) j ,
a ( t ) = ( ω 2 sin ( ω t ) ) i + ( ω 2 cos ( ω t ) ) j , a ( t ) = ( ω 2 sin ( ω t ) ) i + ( ω 2 cos ( ω t ) ) j ,
speed = ω 2 2 ω 2 cos ( ω t ) + ω 2 cos 2 ( ω t ) + ω 2 sin 2 ( ω t ) = 2 ω 2 ( 1 cos ( ω t ) ) speed = ω 2 2 ω 2 cos ( ω t ) + ω 2 cos 2 ( ω t ) + ω 2 sin 2 ( ω t ) = 2 ω 2 ( 1 cos ( ω t ) )

167.

v ( t ) = 9 + 4 t 2 v ( t ) = 9 + 4 t 2

169.

v ( t ) = e −5 t ( cos t 5 sin t ) , e −5 t ( sin t + 5 cos t ) , −20 e −5 t v ( t ) = e −5 t ( cos t 5 sin t ) , e −5 t ( sin t + 5 cos t ) , −20 e −5 t

171.

a(t)=e−5t(sint5cost)5e−5t(cost5sint),a(t)=e−5t(sint5cost)5e−5t(cost5sint), e−5t(cost5sint)+5e−5t(sint+5cost),100e−5te−5t(cost5sint)+5e−5t(sint+5cost),100e−5t

173.

44.185 sec

175.

t=88.37t=88.37 sec

177.

88.37 sec

179.

The range is approximately 886.29 m.

181.

v=42.16v=42.16 m/sec

183.

r ( t ) = 0 i + ( 1 6 t 3 + 4.5 t 14 3 ) j + ( t 3 6 1 2 t + 1 3 ) k r ( t ) = 0 i + ( 1 6 t 3 + 4.5 t 14 3 ) j + ( t 3 6 1 2 t + 1 3 ) k

185.

aT=0,aT=0, aN=aω2aN=aω2

187.

aT=3et,aT=3et, aN=2etaN=2et

189.

aT=2t,aT=2t, aN=2aN=2

191.

aT6t+12t31+t4+t2,aT6t+12t31+t4+t2, aN=61+4t2+t41+t2+t4aN=61+4t2+t41+t2+t4

193.

aT=0,aT=0, aN=12π2aN=12π2

195.

r ( t ) = ( −1 m cos t + c + 1 m ) i + ( sin t m + ( v 0 + 1 m ) t ) j r ( t ) = ( −1 m cos t + c + 1 m ) i + ( sin t m + ( v 0 + 1 m ) t ) j

197.

10.94 km/sec

201.

a T = 0.43 m/sec 2 , a T = 0.43 m/sec 2 ,
a N = 2.46 m/sec 2 a N = 2.46 m/sec 2

Review Exercises

203.

False, ddt[u(t)×u(t)]=0ddt[u(t)×u(t)]=0

205.

False, it is |r(t)||r(t)|

207.

t<4,t<4, tnπ2tnπ2

209.


This figure is a curve in 3 dimensions. It is inside of a box. The box represents an octant. The curve begins in the center of the bottom of the box and spirals to the top of the box, increasing radius as it goes.
211.

r ( t ) = t , 2 t 2 8 , −2 t 2 8 r ( t ) = t , 2 t 2 8 , −2 t 2 8

213.

u(t)=2t,2,20t4,u(t)=2t,2,20t4, u(t)=2,0,80t3,u(t)=2,0,80t3, ddt[u(t)×u(t)]=−480t3160t4,24+75t2,12+4t,ddt[u(t)×u(t)]=−480t3160t4,24+75t2,12+4t, ddt[u(t)×u(t)]=480t3+160t4,−2475t2,−124t,ddt[u(t)×u(t)]=480t3+160t4,−2475t2,−124t, ddt[u(t)·u(t)]=720t89600t3+6t2+4,ddt[u(t)·u(t)]=720t89600t3+6t2+4, unit tangent vector: T(t)=2t400t8+4t2+4i+2400t8+4t2+4j+20t4400t8+4t2+4kT(t)=2t400t8+4t2+4i+2400t8+4t2+4j+20t4400t8+4t2+4k

215.

ln ( 4 ) 2 2 i + 2 j + 2 ( 2 + 2 ) π k ln ( 4 ) 2 2 i + 2 j + 2 ( 2 + 2 ) π k

217.

37 2 + 1 12 sinh −1 ( 6 ) 37 2 + 1 12 sinh −1 ( 6 )

219.

r ( t ( s ) ) = cos ( 2 s 65 ) i + 8 s 65 j sin ( 2 s 65 ) k r ( t ( s ) ) = cos ( 2 s 65 ) i + 8 s 65 j sin ( 2 s 65 ) k

221.

e 2 t ( e 2 t + 1 ) 2 e 2 t ( e 2 t + 1 ) 2

223.

aT=e2t1+e2t,aT=e2t1+e2t, aN=2e2t+4e2tsintcost+11+e2taN=2e2t+4e2tsintcost+11+e2t

225.

v(t)=2t,1t,πcos(πt)v(t)=2t,1t,πcos(πt) m/sec, a(t)=2,1t2,π2sin(πt)m/sec2,a(t)=2,1t2,π2sin(πt)m/sec2, speed=4t2+1t2+π2cos2(πt)speed=4t2+1t2+π2cos2(πt) m/sec; at t=1,t=1, r(1)=1,0,0r(1)=1,0,0 m, v(1)=2,1,–πv(1)=2,1,–π m/sec, a(1)=2,−1,0a(1)=2,−1,0 m/sec2, and speed=5+π2speed=5+π2 m/sec

227.

r(t)=v0tg2t2j,r(t)=v0tg2t2j, r(t)=v0(cosθ)t,v0(sinθ)t,g2t2r(t)=v0(cosθ)t,v0(sinθ)t,g2t2

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction
Citation information

© Jul 25, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.