Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Cálculo volumen 2

Ejercicios de repaso

Cálculo volumen 2Ejercicios de repaso

Índice
  1. Prefacio
  2. 1 Integración
    1. Introducción
    2. 1.1 Aproximación de áreas
    3. 1.2 La integral definida
    4. 1.3 El teorema fundamental del cálculo
    5. 1.4 Fórmulas de integración y el teorema del cambio neto
    6. 1.5 Sustitución
    7. 1.6 Integrales con funciones exponenciales y logarítmicas
    8. 1.7 Integrales que resultan en funciones trigonométricas inversas
    9. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  3. 2 Aplicaciones de la integración
    1. Introducción
    2. 2.1 Áreas entre curvas
    3. 2.2 Determinar los volúmenes mediante el corte
    4. 2.3 Volúmenes de revolución: capas cilíndricas
    5. 2.4 Longitud del arco de una curva y superficie
    6. 2.5 Aplicaciones físicas
    7. 2.6 Momentos y centros de masa
    8. 2.7 Integrales, funciones exponenciales y logaritmos
    9. 2.8 Crecimiento y decaimiento exponencial
    10. 2.9 Cálculo de las funciones hiperbólicas
    11. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  4. 3 Técnicas de integración
    1. Introducción
    2. 3.1 Integración por partes
    3. 3.2 Integrales trigonométricas
    4. 3.3 Sustitución trigonométrica
    5. 3.4 Fracciones parciales
    6. 3.5 Otras estrategias de integración
    7. 3.6 Integración numérica
    8. 3.7 Integrales impropias
    9. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  5. 4 Introducción a las ecuaciones diferenciales
    1. Introducción
    2. 4.1 Fundamentos de las ecuaciones diferenciales
    3. 4.2 Campos de direcciones y métodos numéricos
    4. 4.3 Ecuaciones separables
    5. 4.4 La ecuación logística
    6. 4.5 Ecuaciones lineales de primer orden
    7. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  6. 5 Secuencias y series
    1. Introducción
    2. 5.1 Secuencias
    3. 5.2 Serie infinita
    4. 5.3 Las pruebas de divergencia e integral
    5. 5.4 Pruebas de comparación
    6. 5.5 Series alternadas
    7. 5.6 Criterios del cociente y la raíz
    8. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  7. 6 Serie de potencias
    1. Introducción
    2. 6.1 Series y funciones de potencia
    3. 6.2 Propiedades de las series de potencia
    4. 6.3 Series de Taylor y Maclaurin
    5. 6.4 Trabajar con la serie de Taylor
    6. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  8. 7 Ecuaciones paramétricas y coordenadas polares
    1. Introducción
    2. 7.1 Ecuaciones paramétricas
    3. 7.2 Cálculo de curvas paramétricas
    4. 7.3 Coordenadas polares
    5. 7.4 Área y longitud de arco en coordenadas polares
    6. 7.5 Secciones cónicas
    7. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  9. A Tabla de integrales
  10. B Tabla de derivadas
  11. C Repaso de Precálculo
  12. Clave de respuestas
    1. Capítulo 1
    2. Capítulo 2
    3. Capítulo 3
    4. Capítulo 4
    5. Capítulo 5
    6. Capítulo 6
    7. Capítulo 7
  13. Índice

Ejercicios de repaso

¿Verdadero o falso? Justifique su respuesta con una prueba o un contraejemplo.

322.

Las coordenadas rectangulares del punto (4,5π6)(4,5π6) son (2 3,–2).(2 3,–2).

323.

Las ecuaciones x=cosh(3t),x=cosh(3t), y=2 senoh(3t)y=2 senoh(3t) representan una hipérbola.

324.

La longitud de arco de la espiral dada por r=θ2 r=θ2 para 0θ3π0θ3π es 94π3.94π3.

325.

Dada x=f(t)x=f(t) y de y=g(t),y=g(t), si dxdy=dydx,dxdy=dydx, entonces f(t)=g(t)+C,f(t)=g(t)+C, donde C es una constante.

En los siguientes ejercicios, dibuje la curva paramétrica y elimine el parámetro para hallar la ecuación cartesiana de la curva.

326.

x=1+t,x=1+t, y=t2 1,y=t2 1, −1t1−1t1

327.

x=et,x=et, y=1e3t,y=1e3t, 0t10t1

328.

x=senθ,x=senθ, y=1cscθ,y=1cscθ, 0θ2 π0θ2 π

329.

x=4cosϕ,x=4cosϕ, y=1senϕ,y=1senϕ, 0ϕ2 π0ϕ2 π

En los siguientes ejercicios, dibuje la curva polar y determine qué tipo de simetría existe, si es que existe.

330.

r=4sen(θ3)r=4sen(θ3) grandes.

331.

r = 5 cos ( 5 θ ) r = 5 cos ( 5 θ )

En los siguientes ejercicios, halle la ecuación polar de la curva dada como ecuación cartesiana.

332.

x + y = 5 x + y = 5

333.

y 2 = 4 + x 2 y 2 = 4 + x 2

En los siguientes ejercicios, halle la ecuación de la línea tangente a la curva dada. Grafique la función y su línea tangente.

334.

x=ln(t),x=ln(t), y=t2 1,y=t2 1, t=1t=1

335.

r=3+cos(2 θ),r=3+cos(2 θ), θ=3π4θ=3π4

336.

Halle dydx,dydx, dxdy,dxdy, y d2 xdy2 d2 xdy2 de y=(2 +et),y=(2 +et), x=1sen(t)x=1sen(t)

En los siguientes ejercicios, halle el área de la región.

337.

x=t2 ,x=t2 , y=ln(t),y=ln(t), 0te0te

338.

r=1senθr=1senθ en el primer cuadrante

En los siguientes ejercicios, halle la longitud de arco de la curva en el intervalo dado.

339.

x=3t+4,x=3t+4, y=9t2 ,y=9t2 , 0t30t3

340.

r=6cosθ,r=6cosθ, 0θ2 π.0θ2 π. Compruebe su respuesta utilizando la geometría.

En los siguientes ejercicios, halle la ecuación cartesiana que describe las formas dadas.

341.

Una parábola con foco (2 ,−5)(2 ,−5) y directriz x=6x=6

342.

Una elipse con una longitud de eje mayor de 10 y focos en (–7,2 )(–7,2 ) y (1,2 )(1,2 )

343.

Una hipérbola con vértices en (3,–2)(3,–2) y (−5,–2)(−5,–2) y focos en (–2,–6)(–2,–6) y (–2,4)(–2,4) grandes.

En los siguientes ejercicios, determine la excentricidad e identifique la sección cónica. Dibuje la sección cónica.

344.

r=61+3cos(θ)r=61+3cos(θ) grandes.

345.

r = 4 3 2 cos θ r = 4 3 2 cos θ

346.

r = 7 5 5 cos θ r = 7 5 5 cos θ

347.

Determine la ecuación cartesiana que describe la órbita de Plutón, la más excéntrica alrededor del Sol. La longitud del eje mayor es de 39,26 UA y la del eje menor de 38,07 UA. ¿Cuál es la excentricidad?

348.

El cometa C/1980 E1 fue observado en 1980. Dada una excentricidad de 1,057 y un perihelio (punto de máxima aproximación al Sol) de 3,364 UA, halle las ecuaciones cartesianas que describen la trayectoria del cometa. ¿Está garantizado que volveremos a ver este cometa? (Pista: Considere el Sol en el punto (0,0).)(0,0).)

Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

Este libro no puede ser utilizado en la formación de grandes modelos de lenguaje ni incorporado de otra manera en grandes modelos de lenguaje u ofertas de IA generativa sin el permiso de OpenStax.

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution-NonCommercial-ShareAlike License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/c%C3%A1lculo-volumen-2/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/c%C3%A1lculo-volumen-2/pages/1-introduccion
Información sobre citas

© 2 mar. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution-NonCommercial-ShareAlike License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.