Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Cálculo volumen 1

C Repaso de Precálculo

Cálculo volumen 1C Repaso de Precálculo

Índice
  1. Prefacio
  2. 1 Funciones y gráficos
    1. Introducción
    2. 1.1 Repaso de las funciones
    3. 1.2 Clases básicas de funciones
    4. 1.3 Funciones trigonométricas
    5. 1.4 Funciones inversas
    6. 1.5 Funciones exponenciales y logarítmicas
    7. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  3. 2 Límites
    1. Introducción
    2. 2.1 Un repaso previo del cálculo
    3. 2.2 El límite de una función
    4. 2.3 Las leyes de los límites
    5. 2.4 Continuidad
    6. 2.5 La definición precisa de un límite
    7. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  4. 3 Derivadas
    1. Introducción
    2. 3.1 Definir la derivada
    3. 3.2 La derivada como función
    4. 3.3 Reglas de diferenciación
    5. 3.4 Las derivadas como tasas de cambio
    6. 3.5 Derivadas de funciones trigonométricas
    7. 3.6 La regla de la cadena
    8. 3.7 Derivadas de funciones inversas
    9. 3.8 Diferenciación implícita
    10. 3.9 Derivadas de funciones exponenciales y logarítmicas
    11. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  5. 4 Aplicaciones de las derivadas
    1. Introducción
    2. 4.1 Tasas relacionadas
    3. 4.2 Aproximaciones lineales y diferenciales
    4. 4.3 Máximos y mínimos
    5. 4.4 El teorema del valor medio
    6. 4.5 Las derivadas y la forma de un gráfico
    7. 4.6 Límites al infinito y asíntotas
    8. 4.7 Problemas de optimización aplicados
    9. 4.8 La regla de L'Hôpital
    10. 4.9 Método de Newton
    11. 4.10 Antiderivadas
    12. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  6. 5 Integración
    1. Introducción
    2. 5.1 Aproximación de áreas
    3. 5.2 La integral definida
    4. 5.3 El teorema fundamental del cálculo
    5. 5.4 Fórmulas de integración y el teorema del cambio neto
    6. 5.5 Sustitución
    7. 5.6 Integrales con funciones exponenciales y logarítmicas
    8. 5.7 Integrales que resultan en funciones trigonométricas inversas
    9. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  7. 6 Aplicaciones de la integración
    1. Introducción
    2. 6.1 Áreas entre curvas
    3. 6.2 Determinar los volúmenes mediante el corte
    4. 6.3 Volúmenes de revolución: capas cilíndricas
    5. 6.4 Longitud del arco de una curva y superficie
    6. 6.5 Aplicaciones físicas
    7. 6.6 Momentos y centros de masa
    8. 6.7 Integrales, funciones exponenciales y logaritmos
    9. 6.8 Crecimiento y decaimiento exponencial
    10. 6.9 Cálculo de las funciones hiperbólicas
    11. Revisión del capítulo
      1. Términos clave
      2. Ecuaciones clave
      3. Conceptos clave
      4. Ejercicios de repaso
  8. A Tabla de integrales
  9. B Tabla de derivadas
  10. C Repaso de Precálculo
  11. Clave de respuestas
    1. Capítulo 1
    2. Capítulo 2
    3. Capítulo 3
    4. Capítulo 4
    5. Capítulo 5
    6. Capítulo 6
  12. Índice

Fórmulas de geometría

Los términos A=área,A=área, V=Volumen,yV=Volumen,y S=área superficial lateralS=área superficial lateral

La figura muestra cinco figuras geométricas. La primera es un paralelogramo con altura marcada como h y base como b. Debajo de la figura está la fórmula del área, A = bh. La segunda es un triángulo cuya altura está marcada como h y cuya base es b. Debajo de la figura está la fórmula del área, A = (1/2)bh. La tercera es un trapecio con el lado horizontal superior marcado como a, la altura como h y la base como b. Debajo de la figura está la fórmula del área, A = (1/2)(a + b)h. La cuarta es un círculo con radio marcado como r. Debajo de la figura está la fórmula del área, A= (pi)(r^2), y la fórmula de la circunferencia, C = 2(pi)r. La quinta es un sector de un círculo con radio marcado como r, longitud del sector como s y ángulo como theta. Debajo de la figura está la fórmula del área, A = (1/2)r^2(theta), y la longitud del sector, s = r(theta) (theta en radianes). La figura muestra tres figuras sólidas. La primera es un cilindro cuya altura está marcada como h y cuyo radio es r. Debajo de la figura están las fórmulas del volumen, V = (pi)(r^2)h, y de área superficial, S = 2(pi)rh. La segunda es un cono cuya altura está marcada como h, cuyo radio es r y cuya longitud lateral es l. Debajo de la figura están las fórmulas del volumen, V = (1/3)(pi)(r^2)h, y de área superficial, S = (pi)rl. La tercera es una esfera con radio marcado como r. Debajo de la figura están las fórmulas del volumen, V = (4/3)(pi)(r^3), y de área superficial, S = 4(pi)r^2.

Fórmulas de álgebra

Leyes de los exponentes

Los términos xmxn=xm+nxmxn=xmn(xm)n=xmn xn=1xn(xy)n=xnyn(xy)n=xnyn x1/n=xnxyn=xnynxyn=xnyn xm/n=xmn=(xn)mxmxn=xm+nxmxn=xmn(xm)n=xmn xn=1xn(xy)n=xnyn(xy)n=xnyn x1/n=xnxyn=xnynxyn=xnyn xm/n=xmn=(xn)m

Factorizaciones especiales

Los términos x2y2=(x+y)(xy)x3+y3=(x+y)(x2xy+y2)x3y3=(xy)(x2+xy+y2)x2y2=(x+y)(xy)x3+y3=(x+y)(x2xy+y2)x3y3=(xy)(x2+xy+y2)

Fórmula cuadrática

Si los valores de ax2+bx+c=0,ax2+bx+c=0, entonces x=b±b24ca2a.x=b±b24ca2a.

Teorema del binomio

Los términos (a+b)n=an+(n1)an1b+(n2)an2b2++(nn1)abn1+bn,(a+b)n=an+(n1)an1b+(n2)an2b2++(nn1)abn1+bn,

donde (nk)=n(n1)(n2)(nk+1)k(k1)(k2)321=n!k!(nk)!(nk)=n(n1)(n2)(nk+1)k(k1)(k2)321=n!k!(nk)!

Fórmulas de trigonometría

Trigonometría de ángulo recto

Los términos senθ=opphypcscθ=hypoppcosθ=adjhypsecθ=hypadjtanθ=oppadjcotθ=adjoppsenθ=opphypcscθ=hypoppcosθ=adjhypsecθ=hypadjtanθ=oppadjcotθ=adjopp

La figura muestra un triángulo rectángulo con el lado más largo marcado como hyp, el cateto más corto marcado como opp, y el cateto más largo marcado como adj. El ángulo entre la hipotenusa y el lado adyacente se denomina theta.

Funciones trigonométricas de ángulos importantes

Los términos θθ Los términos RadianesRadianes Los términos senθsenθ Los términos cosθcosθ Los términos tanθtanθ
Los términos 0°0° Los términos 00 Los términos 00 Los términos 11 Los términos 00
Los términos 30°30° Los términos π/6π/6 Los términos 1/21/2 Los términos 3/23/2 Los términos 3/33/3
Los términos 45°45° Los términos π/4π/4 Los términos 2/22/2 Los términos 2/22/2 Los términos 11
Los términos 60°60° Los términos π/3π/3 Los términos 3/23/2 Los términos 1/21/2 Los términos 33
Los términos 90°90° Los términos π/2π/2 Los términos 11 Los términos 00

Identidades fundamentales

Los términos sen2θ+cos2θ=1sen(θ)=senθ 1+tan2θ=sec2θcos(θ)=cosθ1+cot2θ=csc2θtan(θ)=tanθsin(π2θ)=cosθsin(θ+2π)=senθ cos(π2θ)=senθcos(θ+2π)=cosθ tan(π2θ)=cotθtan(θ+π)=tanθsen2θ+cos2θ=1sen(θ)=senθ 1+tan2θ=sec2θcos(θ)=cosθ1+cot2θ=csc2θtan(θ)=tanθsin(π2θ)=cosθsin(θ+2π)=senθ cos(π2θ)=senθcos(θ+2π)=cosθ tan(π2θ)=cotθtan(θ+π)=tanθ

Ley de senos

Los términos sinAa=sinBb=sinCcsinAa=sinBb=sinCc

La figura muestra un triángulo no rectángulo con vértices marcados como A, B y C. El lado opuesto al ángulo A está marcado como a. El lado opuesto al ángulo B está marcado como b. El lado opuesto al ángulo C está marcado como c.

Ley de los cosenos

Los términos a2=b2+c22bccosAb2=a2+c22accosBc2=a2+b22abcosCa2=b2+c22bccosAb2=a2+c22accosBc2=a2+b22abcosC

Fórmulas de suma y resta

Los términos sen(x+y)=senxcosy+cosxsinysin(xy)=senxcosycosxsinycos(x+y)=cosxcosysenxsinycos(xy)=cosxcosy+senxsinytan(x+y)=tanx+tany1tanxtanytan(xy)=tanxtany1+tanxtanysen(x+y)=senxcosy+cosxsinysin(xy)=senxcosycosxsinycos(x+y)=cosxcosysenxsinycos(xy)=cosxcosy+senxsinytan(x+y)=tanx+tany1tanxtanytan(xy)=tanxtany1+tanxtany

Fórmulas del ángulo doble

Los términos sen2x=2senxcosxcos2x=cos2xsen2x=2cos2x1=12sen2xtan2x=2tanx1tan2xsen2x=2senxcosxcos2x=cos2xsen2x=2cos2x1=12sen2xtan2x=2tanx1tan2x

Fórmulas de ángulo mitad

Los términos sen2x=1cos2x2cos2x=1+cos2x2sen2x=1cos2x2cos2x=1+cos2x2

Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution-NonCommercial-ShareAlike License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/c%C3%A1lculo-volumen-1/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/c%C3%A1lculo-volumen-1/pages/1-introduccion
Información sobre citas

© 2 mar. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution-NonCommercial-ShareAlike License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.