Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Algebra and Trigonometry

Chapter 9

Algebra and TrigonometryChapter 9

Menu
Table of contents
  1. Preface
  2. 1 Prerequisites
    1. Introduction to Prerequisites
    2. 1.1 Real Numbers: Algebra Essentials
    3. 1.2 Exponents and Scientific Notation
    4. 1.3 Radicals and Rational Exponents
    5. 1.4 Polynomials
    6. 1.5 Factoring Polynomials
    7. 1.6 Rational Expressions
    8. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    9. Exercises
      1. Review Exercises
      2. Practice Test
  3. 2 Equations and Inequalities
    1. Introduction to Equations and Inequalities
    2. 2.1 The Rectangular Coordinate Systems and Graphs
    3. 2.2 Linear Equations in One Variable
    4. 2.3 Models and Applications
    5. 2.4 Complex Numbers
    6. 2.5 Quadratic Equations
    7. 2.6 Other Types of Equations
    8. 2.7 Linear Inequalities and Absolute Value Inequalities
    9. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  4. 3 Functions
    1. Introduction to Functions
    2. 3.1 Functions and Function Notation
    3. 3.2 Domain and Range
    4. 3.3 Rates of Change and Behavior of Graphs
    5. 3.4 Composition of Functions
    6. 3.5 Transformation of Functions
    7. 3.6 Absolute Value Functions
    8. 3.7 Inverse Functions
    9. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  5. 4 Linear Functions
    1. Introduction to Linear Functions
    2. 4.1 Linear Functions
    3. 4.2 Modeling with Linear Functions
    4. 4.3 Fitting Linear Models to Data
    5. Chapter Review
      1. Key Terms
      2. Key Concepts
    6. Exercises
      1. Review Exercises
      2. Practice Test
  6. 5 Polynomial and Rational Functions
    1. Introduction to Polynomial and Rational Functions
    2. 5.1 Quadratic Functions
    3. 5.2 Power Functions and Polynomial Functions
    4. 5.3 Graphs of Polynomial Functions
    5. 5.4 Dividing Polynomials
    6. 5.5 Zeros of Polynomial Functions
    7. 5.6 Rational Functions
    8. 5.7 Inverses and Radical Functions
    9. 5.8 Modeling Using Variation
    10. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  7. 6 Exponential and Logarithmic Functions
    1. Introduction to Exponential and Logarithmic Functions
    2. 6.1 Exponential Functions
    3. 6.2 Graphs of Exponential Functions
    4. 6.3 Logarithmic Functions
    5. 6.4 Graphs of Logarithmic Functions
    6. 6.5 Logarithmic Properties
    7. 6.6 Exponential and Logarithmic Equations
    8. 6.7 Exponential and Logarithmic Models
    9. 6.8 Fitting Exponential Models to Data
    10. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  8. 7 The Unit Circle: Sine and Cosine Functions
    1. Introduction to The Unit Circle: Sine and Cosine Functions
    2. 7.1 Angles
    3. 7.2 Right Triangle Trigonometry
    4. 7.3 Unit Circle
    5. 7.4 The Other Trigonometric Functions
    6. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    7. Exercises
      1. Review Exercises
      2. Practice Test
  9. 8 Periodic Functions
    1. Introduction to Periodic Functions
    2. 8.1 Graphs of the Sine and Cosine Functions
    3. 8.2 Graphs of the Other Trigonometric Functions
    4. 8.3 Inverse Trigonometric Functions
    5. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    6. Exercises
      1. Review Exercises
      2. Practice Test
  10. 9 Trigonometric Identities and Equations
    1. Introduction to Trigonometric Identities and Equations
    2. 9.1 Verifying Trigonometric Identities and Using Trigonometric Identities to Simplify Trigonometric Expressions
    3. 9.2 Sum and Difference Identities
    4. 9.3 Double-Angle, Half-Angle, and Reduction Formulas
    5. 9.4 Sum-to-Product and Product-to-Sum Formulas
    6. 9.5 Solving Trigonometric Equations
    7. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    8. Exercises
      1. Review Exercises
      2. Practice Test
  11. 10 Further Applications of Trigonometry
    1. Introduction to Further Applications of Trigonometry
    2. 10.1 Non-right Triangles: Law of Sines
    3. 10.2 Non-right Triangles: Law of Cosines
    4. 10.3 Polar Coordinates
    5. 10.4 Polar Coordinates: Graphs
    6. 10.5 Polar Form of Complex Numbers
    7. 10.6 Parametric Equations
    8. 10.7 Parametric Equations: Graphs
    9. 10.8 Vectors
    10. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  12. 11 Systems of Equations and Inequalities
    1. Introduction to Systems of Equations and Inequalities
    2. 11.1 Systems of Linear Equations: Two Variables
    3. 11.2 Systems of Linear Equations: Three Variables
    4. 11.3 Systems of Nonlinear Equations and Inequalities: Two Variables
    5. 11.4 Partial Fractions
    6. 11.5 Matrices and Matrix Operations
    7. 11.6 Solving Systems with Gaussian Elimination
    8. 11.7 Solving Systems with Inverses
    9. 11.8 Solving Systems with Cramer's Rule
    10. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  13. 12 Analytic Geometry
    1. Introduction to Analytic Geometry
    2. 12.1 The Ellipse
    3. 12.2 The Hyperbola
    4. 12.3 The Parabola
    5. 12.4 Rotation of Axes
    6. 12.5 Conic Sections in Polar Coordinates
    7. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    8. Exercises
      1. Review Exercises
      2. Practice Test
  14. 13 Sequences, Probability, and Counting Theory
    1. Introduction to Sequences, Probability and Counting Theory
    2. 13.1 Sequences and Their Notations
    3. 13.2 Arithmetic Sequences
    4. 13.3 Geometric Sequences
    5. 13.4 Series and Their Notations
    6. 13.5 Counting Principles
    7. 13.6 Binomial Theorem
    8. 13.7 Probability
    9. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  15. A | Proofs, Identities, and Toolkit Functions
  16. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
  17. Index

Try It

9.1 Verifying Trigonometric Identities and Using Trigonometric Identities to Simplify Trigonometric Expressions

1.
cscθcosθtanθ = ( 1 sinθ )cosθ( sinθ cosθ ) = cosθ sinθ ( sinθ cosθ ) = sinθcosθ sinθcosθ = 1 cscθcosθtanθ = ( 1 sinθ )cosθ( sinθ cosθ ) = cosθ sinθ ( sinθ cosθ ) = sinθcosθ sinθcosθ = 1
2.
cotθ cscθ = cosθ sinθ 1 sinθ = cosθ sinθ ⋅ sinθ 1 = cosθ cotθ cscθ = cosθ sinθ 1 sinθ = cosθ sinθ ⋅ sinθ 1 = cosθ
3.

sin 2 θ−1 tanθsinθ−tanθ = (sinθ+1)(sinθ−1) tanθ(sinθ−1) = sinθ+1 tanθ sin 2 θ−1 tanθsinθ−tanθ = (sinθ+1)(sinθ−1) tanθ(sinθ−1) = sinθ+1 tanθ

4.

This is a difference of squares formula: 25−9 sin 2 θ=(5−3sinθ)(5+3sinθ). 25−9 sin 2 θ=(5−3sinθ)(5+3sinθ).

5.
cosθ 1+sinθ ( 1−sinθ 1−sinθ ) = cosθ(1−sinθ) 1− sin 2 θ = cosθ(1−sinθ) cos 2 θ = 1−sinθ cosθ cosθ 1+sinθ ( 1−sinθ 1−sinθ ) = cosθ(1−sinθ) 1− sin 2 θ = cosθ(1−sinθ) cos 2 θ = 1−sinθ cosθ

9.2 Sum and Difference Identities

1.

2 + 6 4 2 + 6 4

2.

2 − 6 4 2 − 6 4

3.

1− 3 1+ 3 1− 3 1+ 3

4.

cos( 5Ï€ 14 ) cos( 5Ï€ 14 )

5.
tan(π−θ) = tan(π)−tanθ 1+tan(π)tanθ = 0−tanθ 1+0⋅tanθ = −tanθ tan(π−θ) = tan(π)−tanθ 1+tan(π)tanθ = 0−tanθ 1+0⋅tanθ = −tanθ

9.3 Double-Angle, Half-Angle, and Reduction Formulas

1.

cos( 2α )= 7 32 cos( 2α )= 7 32

2.

cos 4 θ− sin 4 θ=( cos 2 θ+ sin 2 θ )( cos 2 θ− sin 2 θ )=cos( 2θ ) cos 4 θ− sin 4 θ=( cos 2 θ+ sin 2 θ )( cos 2 θ− sin 2 θ )=cos( 2θ )

3.

cos( 2θ )cosθ=( cos 2 θ− sin 2 θ )cosθ= cos 3 θ−cosθ sin 2 θ cos( 2θ )cosθ=( cos 2 θ− sin 2 θ )cosθ= cos 3 θ−cosθ sin 2 θ

4.

10 cos 4 x = 10 ( cos 2 x ) 2 = 10 [ 1+cos(2x) 2 ] 2 Substitute reduction formula for cos 2 x. = 10 4 [1+2cos(2x)+ cos 2 (2x)] = 10 4 + 10 2 cos(2x)+ 10 4 ( 1+cos2(2x) 2 ) Substitute reduction formula for cos 2 x. = 10 4 + 10 2 cos(2x)+ 10 8 + 10 8 cos(4x) = 30 8 +5cos(2x)+ 10 8 cos(4x) = 15 4 +5cos(2x)+ 5 4 cos(4x) 10 cos 4 x = 10 ( cos 2 x ) 2 = 10 [ 1+cos(2x) 2 ] 2 Substitute reduction formula for cos 2 x. = 10 4 [1+2cos(2x)+ cos 2 (2x)] = 10 4 + 10 2 cos(2x)+ 10 4 ( 1+cos2(2x) 2 ) Substitute reduction formula for cos 2 x. = 10 4 + 10 2 cos(2x)+ 10 8 + 10 8 cos(4x) = 30 8 +5cos(2x)+ 10 8 cos(4x) = 15 4 +5cos(2x)+ 5 4 cos(4x)

5.

− 2 5 − 2 5

9.4 Sum-to-Product and Product-to-Sum Formulas

1.

1 2 ( cos6θ+cos2θ ) 1 2 ( cos6θ+cos2θ )

2.

1 2 ( sin2x+sin2y ) 1 2 ( sin2x+sin2y )

3.

−2− 3 4 −2− 3 4

4.

2sin( 2θ )cos( θ ) 2sin( 2θ )cos( θ )

5.

tanθcotθ− cos 2 θ = ( sinθ cosθ )( cosθ sinθ )− cos 2 θ = 1− cos 2 θ = sin 2 θ tanθcotθ− cos 2 θ = ( sinθ cosθ )( cosθ sinθ )− cos 2 θ = 1− cos 2 θ = sin 2 θ

9.5 Solving Trigonometric Equations

1.

x= 7Ï€ 6 , 11Ï€ 6 x= 7Ï€ 6 , 11Ï€ 6

2.

π 3 ±πk π 3 ±πk

3.

θ≈1.7722±2πk θ≈1.7722±2πk and θ≈4.5110±2πk θ≈4.5110±2πk

4.

cosθ=−1,θ=π cosθ=−1,θ=π

5.

π 2 , 2π 3 , 4π 3 , 3π 2 π 2 , 2π 3 , 4π 3 , 3π 2

9.1 Section Exercises

1.

All three functions, F F,GG, and H H, are even.

This is because F( −x )=sin( −x )sin( −x )=( −sinx )( −sinx )= sin 2 x=F( x ) F( −x )=sin( −x )sin( −x )=( −sinx )( −sinx )= sin 2 x=F( x ),G( −x )=cos( −x )cos( −x )=cosxcosx= cos 2 x=G( x ) G( −x )=cos( −x )cos( −x )=cosxcosx= cos 2 x=G( x ) and H( −x )=tan( −x )tan( −x )=( −tanx )( −tanx )= tan 2 x=H( x ). H( −x )=tan( −x )tan( −x )=( −tanx )( −tanx )= tan 2 x=H( x ).

3.

When cost=0, cost=0, then sect= 1 0 , sect= 1 0 , which is undefined.

5.

sinx sinx

7.

secx secx

9.

csct csct

11.

−1 −1

13.

sec 2 x sec 2 x

15.

sin 2 x+1 sin 2 x+1

17.

1 sinx 1 sinx

19.

1 cotx 1 cotx

21.

tanx tanx

23.

−4secxtanx −4secxtanx

25.

± 1 cot 2 x +1 ± 1 cot 2 x +1

27.

± 1− sin 2 x sinx ± 1− sin 2 x sinx

29.

Answers will vary. Sample proof:

cosx− cos 3 x = cosx(1− cos 2 x) = cosx sin 2 x cosx− cos 3 x = cosx(1− cos 2 x) = cosx sin 2 x

31.

Answers will vary. Sample proof:
1+ sin 2 x cos 2 x = 1 cos 2 x + sin 2 x cos 2 x = sec 2 x+ tan 2 x= tan 2 x+1+ tan 2 x=1+2 tan 2 x 1+ sin 2 x cos 2 x = 1 cos 2 x + sin 2 x cos 2 x = sec 2 x+ tan 2 x= tan 2 x+1+ tan 2 x=1+2 tan 2 x

33.

Answers will vary. Sample proof:
cos 2 x− tan 2 x=1− sin 2 x−( sec 2 x−1 )=1− sin 2 x− sec 2 x+1=2− sin 2 x− sec 2 x cos 2 x− tan 2 x=1− sin 2 x−( sec 2 x−1 )=1− sin 2 x− sec 2 x+1=2− sin 2 x− sec 2 x

35.

False

37.

False

39.

Proved with negative and Pythagorean identities

41.

True 3 sin 2 θ+4 cos 2 θ=3 sin 2 θ+3 cos 2 θ+ cos 2 θ=3( sin 2 θ+ cos 2 θ )+ cos 2 θ=3+ cos 2 θ 3 sin 2 θ+4 cos 2 θ=3 sin 2 θ+3 cos 2 θ+ cos 2 θ=3( sin 2 θ+ cos 2 θ )+ cos 2 θ=3+ cos 2 θ

9.2 Section Exercises

1.

The cofunction identities apply to complementary angles. Viewing the two acute angles of a right triangle, if one of those angles measures x, x, the second angle measures π 2 −x. π 2 −x. Then sinx=cos( π 2 −x ).  sinx=cos( π 2 −x ).  The same holds for the other cofunction identities. The key is that the angles are complementary.

3.

sin( −x )=−sinx, sin( −x )=−sinx, so sinx sinx is odd. cos( −x )=cos( 0−x )=cosx, cos( −x )=cos( 0−x )=cosx, so cosx cosx is even.

5.

2 + 6 4 2 + 6 4

7.

6 − 2 4 6 − 2 4

9.

−2− 3 −2− 3

11.

− 2 2 sinx− 2 2 cosx − 2 2 sinx− 2 2 cosx

13.

− 1 2 cosx− 3 2 sinx − 1 2 cosx− 3 2 sinx

15.

cscθ cscθ

17.

cotx cotx

19.

tan( x 10 ) tan( x 10 )

21.

sin(a−b) = ( 4 5 )( 1 3 )−( 3 5 )( 2 2 3 ) = 4−6 2 15 cos(a+b) = ( 3 5 )( 1 3 )−( 4 5 )( 2 2 3 ) = 3−8 2 15 sin(a−b) = ( 4 5 )( 1 3 )−( 3 5 )( 2 2 3 ) = 4−6 2 15 cos(a+b) = ( 3 5 )( 1 3 )−( 4 5 )( 2 2 3 ) = 3−8 2 15

23.

2 − 6 4 2 − 6 4

25.

sinx sinx

Graph of y=sin(x) from -2pi to 2pi.
27.

cot( π 6 −x ) cot( π 6 −x )

Graph of y=cot(pi/6 - x) from -2pi to pi - in comparison to the usual y=cot(x) graph, this one is reflected across the x-axis and shifted by pi/6.
29.

cot( π 4 +x ) cot( π 4 +x )

Graph of y=cot(pi/4 + x) - in comparison to the usual y=cot(x) graph, this one is shifted by pi/4.
31.

sinx 2 + cosx 2 sinx 2 + cosx 2

Graph of y = sin(x) / rad2 + cos(x) / rad2 - it looks like the sin curve shifted by pi/4.
33.

They are the same.

35.

They are the different, try g( x )=sin( 9x )−cos( 3x )sin( 6x ). g( x )=sin( 9x )−cos( 3x )sin( 6x ).

37.

They are the same.

39.

They are the different, try g( θ )= 2tanθ 1− tan 2 θ . g( θ )= 2tanθ 1− tan 2 θ .

41.

They are different, try g( x )= tanx−tan( 2x ) 1+tanxtan( 2x ) . g( x )= tanx−tan( 2x ) 1+tanxtan( 2x ) .

43.

− 3 −1 2 2 ,or âˆ’0.2588 − 3 −1 2 2 ,or âˆ’0.2588

45.

1+ 3 2 2 , 1+ 3 2 2 , or 0.9659

47.

tan( x+ π 4 ) = tanx+tan( π 4 ) 1−tanxtan( π 4 ) = tanx+1 1−tanx(1) = tanx+1 1−tanx tan( x+ π 4 ) = tanx+tan( π 4 ) 1−tanxtan( π 4 ) = tanx+1 1−tanx(1) = tanx+1 1−tanx

49.

cos(a+b) cosacosb = cosacosb cosacosb − sinasinb cosacosb = 1−tanatanb cos(a+b) cosacosb = cosacosb cosacosb − sinasinb cosacosb = 1−tanatanb

51.

cos(x+h)−cosx h = cosxcosh−sinxsinh−cosx h = cosx(cosh−1)−sinxsinh h = cosx cosh−1 h −sinx sinh h cos(x+h)−cosx h = cosxcosh−sinxsinh−cosx h = cosx(cosh−1)−sinxsinh h = cosx cosh−1 h −sinx sinh h

53.

True

55.

True. Note that  sin( α+β )=sin( π−γ )    sin( α+β )=sin( π−γ )   and expand the right hand side.

9.3 Section Exercises

1.

Use the Pythagorean identities and isolate the squared term.

3.

1−cosx sinx , sinx 1+cosx , 1−cosx sinx , sinx 1+cosx , multiplying the top and bottom by 1−cosx 1−cosx and 1+cosx , 1+cosx , respectively.

5.

a) 3 7 32 3 7 32 b) 31 32 31 32 c) 3 7 31 3 7 31

7.

a) 3 2 3 2 b) − 1 2 − 1 2 c) − 3 − 3

9.

cosθ=− 2 5 5 ,sinθ= 5 5 ,tanθ=− 1 2 ,cscθ= 5 ,secθ=− 5 2 ,cotθ=−2 cosθ=− 2 5 5 ,sinθ= 5 5 ,tanθ=− 1 2 ,cscθ= 5 ,secθ=− 5 2 ,cotθ=−2

11.

2sin( π 2 ) 2sin( π 2 )

13.

2− 2 2 2− 2 2

15.

2− 3 2 2− 3 2

17.

2+ 3 2+ 3

19.

−1− 2 −1− 2

21.

a) 3 13 13 3 13 13 b) − 2 13 13 − 2 13 13 c) − 3 2 − 3 2

23.

a) 10 4 10 4 b) 6 4 6 4 c) 15 3 15 3

25.

120 169 ,– 119 169 ,– 120 119 120 169 ,– 119 169 ,– 120 119

27.

2 13 13 , 3 13 13 , 2 3 2 13 13 , 3 13 13 , 2 3

29.

cos(74°) cos(74°)

31.

cos(18x) cos(18x)

33.

3sin(10x) 3sin(10x)

35.

−2sin( −x )cos( −x )=−2(−sin( x )cos( x ))=sin( 2x ) −2sin( −x )cos( −x )=−2(−sin( x )cos( x ))=sin( 2x )

37.

sin(2θ) 1+cos(2θ) tan 2 θ = 2sin(θ)cos(θ) 1+ cos 2 θ− sin 2 θ tan 2 θ= 2sin(θ)cos(θ) 2 cos 2 θ tan 2 θ = sin(θ) cosθ tan 2 θ= cot(θ) tan 2 θ = tan3 θ sin(2θ) 1+cos(2θ) tan 2 θ = 2sin(θ)cos(θ) 1+ cos 2 θ− sin 2 θ tan 2 θ= 2sin(θ)cos(θ) 2 cos 2 θ tan 2 θ = sin(θ) cosθ tan 2 θ= cot(θ) tan 2 θ = tan3 θ

39.

1+cos(12x) 2 1+cos(12x) 2

41.

3+cos(12x)−4cos(6x) 8 3+cos(12x)−4cos(6x) 8

43.

2+cos(2x)−2cos(4x)−cos(6x) 32 2+cos(2x)−2cos(4x)−cos(6x) 32

45.

3+cos(4x)−4cos(2x) 3+cos(4x)+4cos(2x) 3+cos(4x)−4cos(2x) 3+cos(4x)+4cos(2x)

47.

1−cos(4x) 8 1−cos(4x) 8

49.

3+cos(4x)−4cos(2x) 4(cos(2x)+1) 3+cos(4x)−4cos(2x) 4(cos(2x)+1)

51.

( 1+cos( 4x ) )sinx 2 ( 1+cos( 4x ) )sinx 2

53.

4sinxcosx( cos 2 x− sin 2 x ) 4sinxcosx( cos 2 x− sin 2 x )

55.

2tanx 1+ tan 2 x = 2sinx cosx 1+ sin 2 x cos 2 x = 2sinx cosx cos 2 x+ sin 2 x cos 2 x = 2sinx cosx . cos 2 x 1 =2sinxcosx=sin(2x) 2tanx 1+ tan 2 x = 2sinx cosx 1+ sin 2 x cos 2 x = 2sinx cosx cos 2 x+ sin 2 x cos 2 x = 2sinx cosx . cos 2 x 1 =2sinxcosx=sin(2x)

57.

2sinxcosx 2 cos 2 x−1 = sin(2x) cos(2x) =tan(2x) 2sinxcosx 2 cos 2 x−1 = sin(2x) cos(2x) =tan(2x)

59.

sin(x+2x) = sinxcos(2x)+sin(2x)cosx = sinx( cos 2 x− sin 2 x )+2sinxcosxcosx = sinx cos 2 x− sin 3 x+2sinx cos 2 x = 3sinx cos 2 x− sin 3 x sin(x+2x) = sinxcos(2x)+sin(2x)cosx = sinx( cos 2 x− sin 2 x )+2sinxcosxcosx = sinx cos 2 x− sin 3 x+2sinx cos 2 x = 3sinx cos 2 x− sin 3 x

61.

1+cos(2t) sin(2t)−cost = 1+2 cos 2 t−1 2sintcost−cost = 2 cos 2 t cost(2sint−1) = 2cost 2sint−1 1+cos(2t) sin(2t)−cost = 1+2 cos 2 t−1 2sintcost−cost = 2 cos 2 t cost(2sint−1) = 2cost 2sint−1

63.

( cos 2 (4x)− sin 2 (4x)−sin(8x))( cos 2 (4x)− sin 2 (4x)+sin(8x) ) = = (cos(8x)−sin(8x))(cos(8x)+sin(8x)) = cos 2 (8x)− sin 2 (8x) = cos(16x) ( cos 2 (4x)− sin 2 (4x)−sin(8x))( cos 2 (4x)− sin 2 (4x)+sin(8x) ) = = (cos(8x)−sin(8x))(cos(8x)+sin(8x)) = cos 2 (8x)− sin 2 (8x) = cos(16x)

9.4 Section Exercises

1.

Substitute  α    α   into cosine and  β    β   into sine and evaluate.

3.

Answers will vary. There are some equations that involve a sum of two trig expressions where when converted to a product are easier to solve. For example: sin(3x)+sinx cosx =1.   sin(3x)+sinx cosx =1.   When converting the numerator to a product the equation becomes: 2sin(2x)cosx cosx =1 2sin(2x)cosx cosx =1

5.

8( cos( 5x )−cos( 27x ) ) 8( cos( 5x )−cos( 27x ) )

7.

sin( 2x )+sin( 8x ) sin( 2x )+sin( 8x )

9.

1 2 ( cos( 6x )−cos( 4x ) ) 1 2 ( cos( 6x )−cos( 4x ) )

11.

2cos( 5t )cost 2cos( 5t )cost

13.

2cos( 7x ) 2cos( 7x )

15.

2cos( 6x )cos( 3x ) 2cos( 6x )cos( 3x )

17.

1 4 ( 1+ 3 ) 1 4 ( 1+ 3 )

19.

1 4 ( 3 −2 ) 1 4 ( 3 −2 )

21.

1 4 ( 3 −1 ) 1 4 ( 3 −1 )

23.

cos( 80° )−cos( 120° ) cos( 80° )−cos( 120° )

25.

1 2 (sin(221°)+sin(205°)) 1 2 (sin(221°)+sin(205°))

27.

2 cos( 31° ) 2 cos( 31° )

29.

2cos(66.5°)sin(34.5°) 2cos(66.5°)sin(34.5°)

31.

2sin( −1.5° )cos( 0.5° ) 2sin( −1.5° )cos( 0.5° )

33.

2sin(7x)−2sinx=2sin(4x+3x)−2sin(4x−3x)= 2(sin(4x)cos(3x)+sin(3x)cos(4x))−2(sin(4x)cos(3x)−sin(3x)cos(4x))= 2sin(4x)cos(3x)+2sin(3x)cos(4x))−2sin(4x)cos(3x)+2sin(3x)cos(4x))= 4sin(3x)cos(4x) 2sin(7x)−2sinx=2sin(4x+3x)−2sin(4x−3x)= 2(sin(4x)cos(3x)+sin(3x)cos(4x))−2(sin(4x)cos(3x)−sin(3x)cos(4x))= 2sin(4x)cos(3x)+2sin(3x)cos(4x))−2sin(4x)cos(3x)+2sin(3x)cos(4x))= 4sin(3x)cos(4x)

35.

sinx+sin(3x) = 2sin( 4x 2 )cos( −2x 2 )= 2sin(2x)cosx = 2(2sinxcosx)cosx= 4sinx cos 2 x sinx+sin(3x) = 2sin( 4x 2 )cos( −2x 2 )= 2sin(2x)cosx = 2(2sinxcosx)cosx= 4sinx cos 2 x

37.

2tanxcos( 3x )= 2sinxcos(3x) cosx = 2(.5(sin(4x)−sin(2x))) cosx = 1 cosx ( sin(4x)−sin(2x) )=secx( sin( 4x )−sin( 2x ) ) 2tanxcos( 3x )= 2sinxcos(3x) cosx = 2(.5(sin(4x)−sin(2x))) cosx = 1 cosx ( sin(4x)−sin(2x) )=secx( sin( 4x )−sin( 2x ) )

39.

2cos(35°)cos(23°),1.5081 2cos(35°)cos(23°),1.5081

41.

−2sin(33°)sin(11°),−0.2078 −2sin(33°)sin(11°),−0.2078

43.

1 2 (cos(99°)−cos(71°)),−0.2410 1 2 (cos(99°)−cos(71°)),−0.2410

45.

It is an identity.

47.

It is not an identity, but 2 cos 3 x 2 cos 3 x is.

49.

tan( 3t ) tan( 3t )

51.

2cos( 2x ) 2cos( 2x )

53.

−sin(14x) −sin(14x)

55.

Start with cosx+cosy. cosx+cosy. Make a substitution and let x=α+β x=α+β and let y=α−β, y=α−β, so cosx+cosy cosx+cosy becomes cos(α+β)+cos(α−β)=cosαcosβ−sinαsinβ+cosαcosβ+sinαsinβ= 2cosαcosβ cos(α+β)+cos(α−β)=cosαcosβ−sinαsinβ+cosαcosβ+sinαsinβ= 2cosαcosβ

Since x=α+β x=α+β and y=α−β, y=α−β, we can solve for α α and β β in terms of x and y and substitute in for 2cosαcosβ 2cosαcosβ and get 2cos( x+y 2 )cos( x−y 2 ). 2cos( x+y 2 )cos( x−y 2 ).

57.

cos( 3x )+cosx cos( 3x )−cosx = 2cos( 2x )cosx −2sin( 2x )sinx =−cot( 2x )cotx cos( 3x )+cosx cos( 3x )−cosx = 2cos( 2x )cosx −2sin( 2x )sinx =−cot( 2x )cotx

59.

cos(2y)−cos(4y) sin(2y)+sin(4y) = −2sin(3y)sin(−y) 2sin(3y)cosy = 2sin(3y)sin(y) 2sin(3y)cosy = tany cos(2y)−cos(4y) sin(2y)+sin(4y) = −2sin(3y)sin(−y) 2sin(3y)cosy = 2sin(3y)sin(y) 2sin(3y)cosy = tany

61.

cosx−cos( 3x )=−2sin(2x)sin(−x)= 2(2sinxcosx)sinx=4 sin 2 xcosx cosx−cos( 3x )=−2sin(2x)sin(−x)= 2(2sinxcosx)sinx=4 sin 2 xcosx

63.

tan( π 4 −t )= tan( π 4 )−tant 1+tan( π 4 )tan(t) = 1−tant 1+tant tan( π 4 −t )= tan( π 4 )−tant 1+tan( π 4 )tan(t) = 1−tant 1+tant

9.5 Section Exercises

1.

There will not always be solutions to trigonometric function equations. For a basic example, cos(x)=−5. cos(x)=−5.

3.

If the sine or cosine function has a coefficient of one, isolate the term on one side of the equals sign. If the number it is set equal to has an absolute value less than or equal to one, the equation has solutions, otherwise it does not. If the sine or cosine does not have a coefficient equal to one, still isolate the term but then divide both sides of the equation by the leading coefficient. Then, if the number it is set equal to has an absolute value greater than one, the equation has no solution.

5.

π 3 , 2π 3 π 3 , 2π 3

7.

3Ï€ 4 , 5Ï€ 4 3Ï€ 4 , 5Ï€ 4

9.

π 4 , 5π 4 π 4 , 5π 4

11.

π 4 , 3π 4 , 5π 4 , 7π 4 π 4 , 3π 4 , 5π 4 , 7π 4

13.

π 4 , 7π 4 π 4 , 7π 4

15.

7Ï€ 6 , 11Ï€ 6 7Ï€ 6 , 11Ï€ 6

17.

π 18 , 5π 18 , 13π 18 , 17π 18 , 25π 18 , 29π 18 π 18 , 5π 18 , 13π 18 , 17π 18 , 25π 18 , 29π 18

19.

3Ï€ 12 , 5Ï€ 12 , 11Ï€ 12 , 13Ï€ 12 , 19Ï€ 12 , 21Ï€ 12 3Ï€ 12 , 5Ï€ 12 , 11Ï€ 12 , 13Ï€ 12 , 19Ï€ 12 , 21Ï€ 12

21.

1 6 , 5 6 , 13 6 , 17 6 , 25 6 , 29 6 , 37 6 1 6 , 5 6 , 13 6 , 17 6 , 25 6 , 29 6 , 37 6

23.

0, π 3 ,π, 5π 3 0, π 3 ,π, 5π 3

25.

π 3 ,π, 5π 3 π 3 ,π, 5π 3

27.

π 3 , 3π 2 , 5π 3 π 3 , 3π 2 , 5π 3

29.

0,Ï€ 0,Ï€

31.

π− sin −1 ( − 1 4 ), 7π 6 , 11π 6 ,2π+ sin −1 ( − 1 4 ) π− sin −1 ( − 1 4 ), 7π 6 , 11π 6 ,2π+ sin −1 ( − 1 4 )

33.

1 3 ( sin −1 ( 9 10 ) ) 1 3 ( sin −1 ( 9 10 ) ), π 3 − 1 3 ( sin −1 ( 9 10 ) ) π 3 − 1 3 ( sin −1 ( 9 10 ) ), 2π 3 + 1 3 ( sin −1 ( 9 10 ) ) 2π 3 + 1 3 ( sin −1 ( 9 10 ) ), π− 1 3 ( sin −1 ( 9 10 ) )π− 1 3 ( sin −1 ( 9 10 ) ), 4π 3 + 1 3 ( sin −1 ( 9 10 ) ) 4π 3 + 1 3 ( sin −1 ( 9 10 ) ), 5π 3 − 1 3 ( sin −1 ( 9 10 ) ) 5π 3 − 1 3 ( sin −1 ( 9 10 ) )

35.

0 0

37.

π 6 , 5π 6 , 7π 6 , 11π 6 π 6 , 5π 6 , 7π 6 , 11π 6

39.

3π 2 , π 6 , 5π 6 3π 2 , π 6 , 5π 6

41.

0, π 3 ,π, 4π 3 0, π 3 ,π, 4π 3

43.

There are no solutions.

45.

cos −1 ( 1 3 ( 1− 7 ) ) cos −1 ( 1 3 ( 1− 7 ) ), 2π− cos −1 ( 1 3 ( 1− 7 ) ) 2π− cos −1 ( 1 3 ( 1− 7 ) )

47.

tan −1 ( 1 2 ( 29 −5 ) ) tan −1 ( 1 2 ( 29 −5 ) ), π+ tan −1 ( 1 2 ( − 29 −5 ) )π+ tan −1 ( 1 2 ( − 29 −5 ) ), π+ tan −1 ( 1 2 ( 29 −5 ) )π+ tan −1 ( 1 2 ( 29 −5 ) ), 2π+ tan −1 ( 1 2 ( − 29 −5 ) ) 2π+ tan −1 ( 1 2 ( − 29 −5 ) )

49.

There are no solutions.

51.

There are no solutions.

53.

0, 2Ï€ 3 , 4Ï€ 3 0, 2Ï€ 3 , 4Ï€ 3

55.

π 4 , 3π 4 , 5π 4 , 7π 4 π 4 , 3π 4 , 5π 4 , 7π 4

57.

sin −1 ( 3 5 ), π 2 ,π− sin −1 ( 3 5 ), 3π 2 sin −1 ( 3 5 ), π 2 ,π− sin −1 ( 3 5 ), 3π 2

59.

cos −1 ( − 1 4 ),2π− cos −1 ( − 1 4 ) cos −1 ( − 1 4 ),2π− cos −1 ( − 1 4 )

61.

π 3 π 3 , cos −1 ( − 3 4 ) cos −1 ( − 3 4 ), 2π− cos −1 ( − 3 4 )2π− cos −1 ( − 3 4 ), 5π 3 5π 3

63.

cos −1 ( 3 4 ) cos −1 ( 3 4 ), cos −1 ( − 2 3 ) cos −1 ( − 2 3 ), 2π− cos −1 ( − 2 3 )2π− cos −1 ( − 2 3 ), 2π− cos −1 ( 3 4 ) 2π− cos −1 ( 3 4 )

65.

0, π 2 ,π, 3π 2 0, π 2 ,π, 3π 2

67.

π 3 π 3 , cos −1 ( − 1 4 ) cos −1 ( − 1 4 ), 2π− cos −1 ( − 1 4 )2π− cos −1 ( − 1 4 ), 5π 3 5π 3

69.

There are no solutions.

71.

π+ tan −1 ( −2 ) π+ tan −1 ( −2 ), π+ tan −1 ( − 3 2 )π+ tan −1 ( − 3 2 ), 2π+ tan −1 ( −2 )2π+ tan −1 ( −2 ), 2π+ tan −1 ( − 3 2 ) 2π+ tan −1 ( − 3 2 )

73.

2Ï€k+0.2734,2Ï€k+2.8682 2Ï€k+0.2734,2Ï€k+2.8682

75.

πk−0.3277 πk−0.3277

77.

0.6694,1.8287,3.8110,4.9703 0.6694,1.8287,3.8110,4.9703

79.

1.0472,3.1416,5.2360 1.0472,3.1416,5.2360

81.

0.5326,1.7648,3.6742,4.9064 0.5326,1.7648,3.6742,4.9064

83.

sin −1 ( 1 4 ),π− sin −1 ( 1 4 ), 3π 2 sin −1 ( 1 4 ),π− sin −1 ( 1 4 ), 3π 2

85.

π 2 , 3π 2 π 2 , 3π 2

87.

There are no solutions.

89.

0, π 2 ,π, 3π 2 0, π 2 ,π, 3π 2

91.

There are no solutions.

93.

7.2 ∘ 7.2 ∘

95.

5.7 ∘ 5.7 ∘

97.

82.4 ∘ 82.4 ∘

99.

31.0 ∘ 31.0 ∘

101.

88.7 ∘ 88.7 ∘

103.

59.0 ∘ 59.0 ∘

105.

36.9 ∘ 36.9 ∘

Review Exercises

1.

sin −1 ( 3 3 ) sin −1 ( 3 3 ), π− sin −1 ( 3 3 )π− sin −1 ( 3 3 ), π+ sin −1 ( 3 3 )π+ sin −1 ( 3 3 ), 2π− sin −1 ( 3 3 ) 2π− sin −1 ( 3 3 )

3.

7Ï€ 6 , 11Ï€ 6 7Ï€ 6 , 11Ï€ 6

5.

sin −1 ( 1 4 ),π− sin −1 ( 1 4 ) sin −1 ( 1 4 ),π− sin −1 ( 1 4 )

7.

1 1

9.

Yes

11.

−2− 3 −2− 3

13.

2 2 2 2

15.

cos(4x)−cos(3x)cosx = cos(2x+2x)−cos(x+2x)cosx = cos(2x)cos(2x)−sin(2x)sin(2x)−cosxcos(2x)cosx+sinxsin(2x)cosx = ( cos 2 x− sin 2 x ) 2 −4 cos 2 x sin 2 x− cos 2 x( cos 2 x− sin 2 x )+sinx(2)sinxcosxcosx = ( cos 2 x− sin 2 x ) 2 −4 cos 2 x sin 2 x− cos 2 x( cos 2 x− sin 2 x )+2 sin 2 x cos 2 x = cos 4 x−2 cos 2 x sin 2 x+ sin 4 x−4 cos 2 x sin 2 x− cos 4 x+ cos 2 x sin 2 x+2 sin 2 x cos 2 x = sin 4 x−4 cos 2 x sin 2 x+ cos 2 x sin 2 x = sin 2 x( sin 2 x+ cos 2 x )−4 cos 2 x sin 2 x = sin 2 x−4 cos 2 x sin 2 x cos(4x)−cos(3x)cosx = cos(2x+2x)−cos(x+2x)cosx = cos(2x)cos(2x)−sin(2x)sin(2x)−cosxcos(2x)cosx+sinxsin(2x)cosx = ( cos 2 x− sin 2 x ) 2 −4 cos 2 x sin 2 x− cos 2 x( cos 2 x− sin 2 x )+sinx(2)sinxcosxcosx = ( cos 2 x− sin 2 x ) 2 −4 cos 2 x sin 2 x− cos 2 x( cos 2 x− sin 2 x )+2 sin 2 x cos 2 x = cos 4 x−2 cos 2 x sin 2 x+ sin 4 x−4 cos 2 x sin 2 x− cos 4 x+ cos 2 x sin 2 x+2 sin 2 x cos 2 x = sin 4 x−4 cos 2 x sin 2 x+ cos 2 x sin 2 x = sin 2 x( sin 2 x+ cos 2 x )−4 cos 2 x sin 2 x = sin 2 x−4 cos 2 x sin 2 x

17.

tan( 5 8 x ) tan( 5 8 x )

19.

3 3 3 3

21.

− 24 25 ,− 7 25 , 24 7 − 24 25 ,− 7 25 , 24 7

23.

2( 2+ 2 ) 2( 2+ 2 )

25.

2 10 , 7 2 10 , 1 7 , 3 5 , 4 5 , 3 4 2 10 , 7 2 10 , 1 7 , 3 5 , 4 5 , 3 4

27.

cotxcos(2x) = cotx( 1−2 sin 2 x ) = cotx− cosx sinx (2) sin 2 x = −2sinxcosx+cotx = −sin(2x)+cotx cotxcos(2x) = cotx( 1−2 sin 2 x ) = cotx− cosx sinx (2) sin 2 x = −2sinxcosx+cotx = −sin(2x)+cotx

29.

10sinx−5sin( 3x )+sin( 5x ) 8( cos( 2x )+1 ) 10sinx−5sin( 3x )+sin( 5x ) 8( cos( 2x )+1 )

31.

3 2 3 2

33.

− 2 2 − 2 2

35.

1 2 ( sin(6x)+sin(12x) ) 1 2 ( sin(6x)+sin(12x) )

37.

2sin( 13 2 x )cos( 9 2 x ) 2sin( 13 2 x )cos( 9 2 x )

39.

3Ï€ 4 , 7Ï€ 4 3Ï€ 4 , 7Ï€ 4

41.

0, π 6 , 5π 6 ,π 0, π 6 , 5π 6 ,π

43.

3Ï€ 2 3Ï€ 2

45.

No solution

47.

0.2527,2.8889,4.7124 0.2527,2.8889,4.7124

49.

1.3694,1.9106,4.3726,4.9137 1.3694,1.9106,4.3726,4.9137

Practice Test

1.

1

3.

sec( θ ) sec( θ )

5.

2 − 6 4 2 − 6 4

7.

− 2 − 3 − 2 − 3

9.

− 1 2 cos θ + 3 2 sin θ − 1 2 cos θ + 3 2 sin θ

11.

1−cos( 64 ∘ ) 2 1−cos( 64 ∘ ) 2

13.

0,Ï€ 0,Ï€

15.

π2,3π2 π2,3π2

17.

2cos(3x)cos(5x)2cos(3x)cos(5x)

19.

4sin( 2θ )cos( 6θ ) 4sin( 2θ )cos( 6θ )

21.

x=cos–1 (15) x=cos–1 (15)

23.

π3 π3

25.

35 , – 45 , – 34 35 , – 45 , – 34

27.

tan3x–tanxsec2x =tanx(tan2x–sec2x) =tanx(tan2x–(1+tan2x)) =tanx(tan2x–1–tan2x) =–tanx=tan(–x)=tan(–x) tan3x–tanxsec2x =tanx(tan2x–sec2x) =tanx(tan2x–(1+tan2x)) =tanx(tan2x–1–tan2x) =–tanx=tan(–x)=tan(–x)

29.

sin(2x) sinx– cos(2x) cosx = 2sinxcosx sinx – 2cos2x–1cosx = 2cosx–2cosx+1cosx = 1cosx =secx=secx sin(2x) sinx– cos(2x) cosx = 2sinxcosx sinx – 2cos2x–1cosx = 2cosx–2cosx+1cosx = 1cosx =secx=secx

31.

Amplitude: 1414 , period: 160160 , frequency: 60 Hz

33.

Amplitude: 8, fast period: 15001500 , fast frequency: 500 Hz, slow period: 110110 , slow frequency: 10 Hz

35.

D(t)=20(0.9086)t cos(4Ï€t) D(t)=20(0.9086)t cos(4Ï€t) , 31 second

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites
Citation information

© Dec 8, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.