Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Algebra and Trigonometry

Review Exercises

Algebra and TrigonometryReview Exercises

Review Exercises

Solving Trigonometric Equations with Identities

For the following exercises, find all solutions exactly that exist on the interval [ 0,2π ). [ 0,2π ).

1.

csc 2 t=3 csc 2 t=3

2.

cos 2 x= 1 4 cos 2 x= 1 4

3.

2sinθ=−1 2sinθ=−1

4.

tanxsinx+sin( x )=0 tanxsinx+sin( x )=0

5.

9sinω2=4 sin 2 ω 9sinω2=4 sin 2 ω

6.

12tan(ω)= tan 2 (ω) 12tan(ω)= tan 2 (ω)

For the following exercises, use basic identities to simplify the expression.

7.

secxcosx+cosx 1 secx secxcosx+cosx 1 secx

8.

sin 3 x+ cos 2 xsinx sin 3 x+ cos 2 xsinx

For the following exercises, determine if the given identities are equivalent.

9.

sin 2 x+ sec 2 x1= ( 1 cos 2 x )( 1+ cos 2 x ) cos 2 x sin 2 x+ sec 2 x1= ( 1 cos 2 x )( 1+ cos 2 x ) cos 2 x

10.

tan 3 x csc 2 x cot 2 xcosxsinx=1 tan 3 x csc 2 x cot 2 xcosxsinx=1

Sum and Difference Identities

For the following exercises, find the exact value.

11.

tan( 7π 12 ) tan( 7π 12 )

12.

cos( 25π 12 ) cos( 25π 12 )

13.

sin(70°)cos(25°)cos(70°)sin(25°) sin(70°)cos(25°)cos(70°)sin(25°)

14.

cos(83°)cos(23°)+sin(83°)sin(23°) cos(83°)cos(23°)+sin(83°)sin(23°)

For the following exercises, prove the identity.

15.

cos( 4x )cos( 3x )cosx= sin 2 x4 cos 2 x sin 2 x cos( 4x )cos( 3x )cosx= sin 2 x4 cos 2 x sin 2 x

16.

cos(3x) cos 3 x=cosx sin 2 xsinxsin(2x) cos(3x) cos 3 x=cosx sin 2 xsinxsin(2x)

For the following exercise, simplify the expression.

17.

tan( 1 2 x )+tan( 1 8 x ) 1tan( 1 8 x )tan( 1 2 x ) tan( 1 2 x )+tan( 1 8 x ) 1tan( 1 8 x )tan( 1 2 x )

For the following exercises, find the exact value.

18.

cos( sin 1 ( 0 ) cos 1 ( 1 2 ) ) cos( sin 1 ( 0 ) cos 1 ( 1 2 ) )

19.

tan( sin 1 ( 0 )+ sin 1 ( 1 2 ) ) tan( sin 1 ( 0 )+ sin 1 ( 1 2 ) )

Double-Angle, Half-Angle, and Reduction Formulas

For the following exercises, find the exact value.

20.

Find sin( 2θ ),cos( 2θ ), sin( 2θ ),cos( 2θ ), and tan( 2θ ) tan( 2θ ) given cosθ= 1 3 cosθ= 1 3 and θ θ is in the interval [ π 2 ,π ]. [ π 2 ,π ].

21.

Find sin( 2θ ),cos( 2θ ), sin( 2θ ),cos( 2θ ), and tan( 2θ ) tan( 2θ ) given secθ= 5 3 secθ= 5 3 and θ θ is in the interval [ π 2 ,π ]. [ π 2 ,π ].

22.

sin( 7π 8 ) sin( 7π 8 )

23.

sec( 3π 8 ) sec( 3π 8 )

For the following exercises, use Figure 1 to find the desired quantities.

Image of a right triangle. The base is 24, the height is unknown, and the hypotenuse is 25. The angle opposite the base is labeled alpha, and the remaining acute angle is labeled beta.
Figure 1
24.

sin(2β),cos(2β),tan(2β),sin(2α),cos(2α),and tan(2α) sin(2β),cos(2β),tan(2β),sin(2α),cos(2α),and tan(2α)

25.

sin( β 2 ),cos( β 2 ),tan( β 2 ),sin( α 2 ),cos( α 2 ),and tan( α 2 ) sin( β 2 ),cos( β 2 ),tan( β 2 ),sin( α 2 ),cos( α 2 ),and tan( α 2 )

For the following exercises, prove the identity.

26.

2cos( 2x ) sin( 2x ) =cotxtanx 2cos( 2x ) sin( 2x ) =cotxtanx

27.

cotxcos(2x)=sin(2x)+cotx cotxcos(2x)=sin(2x)+cotx

For the following exercises, rewrite the expression with no powers.

28.

cos 2 x sin 4 (2x) cos 2 x sin 4 (2x)

29.

tan 2 x sin 3 x tan 2 x sin 3 x

Sum-to-Product and Product-to-Sum Formulas

For the following exercises, evaluate the product for the given expression using a sum or difference of two functions. Write the exact answer.

30.

cos( π 3 )sin( π 4 ) cos( π 3 )sin( π 4 )

31.

2sin( 2π 3 )sin( 5π 6 ) 2sin( 2π 3 )sin( 5π 6 )

32.

2cos( π 5 )cos( π 3 ) 2cos( π 5 )cos( π 3 )

For the following exercises, evaluate the sum by using a product formula. Write the exact answer.

33.

sin( π 12 )sin( 7π 12 ) sin( π 12 )sin( 7π 12 )

34.

cos( 5π 12 )+cos( 7π 12 ) cos( 5π 12 )+cos( 7π 12 )

For the following exercises, change the functions from a product to a sum or a sum to a product.

35.

sin(9x)cos(3x) sin(9x)cos(3x)

36.

cos(7x)cos(12x) cos(7x)cos(12x)

37.

sin(11x)+sin(2x) sin(11x)+sin(2x)

38.

cos(6x)+cos(5x) cos(6x)+cos(5x)

Solving Trigonometric Equations

For the following exercises, find all exact solutions on the interval [ 0,2π ). [ 0,2π ).

39.

tanx+1=0 tanx+1=0

40.

2sin(2x)+ 2 =0 2sin(2x)+ 2 =0

For the following exercises, find all exact solutions on the interval [ 0,2π ). [ 0,2π ).

41.

2 sin 2 xsinx=0 2 sin 2 xsinx=0

42.

cos 2 xcosx1=0 cos 2 xcosx1=0

43.

2 sin 2 x+5sinx+3=0 2 sin 2 x+5sinx+3=0

44.

cosx5sin( 2x )=0 cosx5sin( 2x )=0

45.

1 sec 2 x +2+ sin 2 x+4 cos 2 x=0 1 sec 2 x +2+ sin 2 x+4 cos 2 x=0

For the following exercises, simplify the equation algebraically as much as possible. Then use a calculator to find the solutions on the interval [0,2π). [0,2π). Round to four decimal places.

46.

3 cot 2 x+cotx=1 3 cot 2 x+cotx=1

47.

csc 2 x3cscx4=0 csc 2 x3cscx4=0

For the following exercises, graph each side of the equation to find the approximate solutions on the interval [0,2π). [0,2π).

48.

20 cos 2 x+21cosx+1=0 20 cos 2 x+21cosx+1=0

49.

sec 2 x2secx=15 sec 2 x2secx=15

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites
Citation information

© Dec 8, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.