Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Algebra and Trigonometry

Chapter 10

Algebra and TrigonometryChapter 10
Search for key terms or text.

Try It

10.1 Non-right Triangles: Law of Sines

1.

α= 98 a=34.6 β= 39 b=22 γ= 43 c=23.8 α= 98 a=34.6 β= 39 b=22 γ= 43 c=23.8

2.

Solution 1

α=80° a=120 β83.2° b=121 γ16.8° c35.2 α=80° a=120 β83.2° b=121 γ16.8° c35.2

Solution 2

α =80° a =120 β 96.8° b =121 γ 3.2° c 6.8 α =80° a =120 β 96.8° b =121 γ 3.2° c 6.8
3.

β5.7°,γ94.3°,c101.3 β5.7°,γ94.3°,c101.3

4.

two

5.

about 8.2 8.2 square feet

6.

161.9 yd.

10.2 Non-right Triangles: Law of Cosines

1.

a14.9, a14.9, β23.8°,β23.8°, γ126.2°. γ126.2°.

2.

α27.7°, α27.7°, β40.5°,β40.5°, γ111.8° γ111.8°

3.

Area = 552 square feet

4.

about 8.15 square feet

10.3 Polar Coordinates

1.
2.
3.

( x,y )=( 1 2 , 3 2 ) ( x,y )=( 1 2 , 3 2 )

4.

r= 3 r= 3

5.

x 2 + y 2 =2y x 2 + y 2 =2y or, in the standard form for a circle, x 2 + ( y1 ) 2 =1 x 2 + ( y1 ) 2 =1

10.4 Polar Coordinates: Graphs

1.

The equation fails the symmetry test with respect to the line θ= π 2 θ= π 2 and with respect to the pole. It passes the polar axis symmetry test.

2.

Tests will reveal symmetry about the polar axis. The zero is ( 0, π 2 ), ( 0, π 2 ), and the maximum value is (3,0). (3,0).

3.
4.

The graph is a rose curve, n n even

5.

Rose curve, n n odd

6.

10.5 Polar Form of Complex Numbers

1.
2.

13

3.

| z |= 50 =5 2 | z |= 50 =5 2

4.

z=3( cos( π 2 )+isin( π 2 ) ) z=3( cos( π 2 )+isin( π 2 ) )

5.

z=2( cos( π 6 )+isin( π 6 ) ) z=2( cos( π 6 )+isin( π 6 ) )

6.

z=2 3 2i z=2 3 2i

7.

z 1 z 2 =4 3 ; z 1 z 2 = 3 2 + 3 2 i z 1 z 2 =4 3 ; z 1 z 2 = 3 2 + 3 2 i

8.

z 0 =2(cos(30°)+isin(30°)) z 0 =2(cos(30°)+isin(30°))

z 1 =2(cos(120°)+isin(120°)) z 1 =2(cos(120°)+isin(120°))

z 2 =2(cos(210°)+isin(210°)) z 2 =2(cos(210°)+isin(210°))

z 3 =2(cos(300°)+isin(300°)) z 3 =2(cos(300°)+isin(300°))

10.6 Parametric Equations

1.
t t x( t ) x( t ) y( t ) y( t )
1 1 4 4 2 2
0 0 3 3 4 4
1 1 2 2 6 6
2 2 1 1 8 8
2.

x(t)= t 3 2t y(t)=t x(t)= t 3 2t y(t)=t

3.

y=5 1 2 x3 y=5 1 2 x3

4.

y=ln x y=ln x

5.

x 2 4 + y 2 9 =1 x 2 4 + y 2 9 =1

6.

y= x 2 y= x 2

10.7 Parametric Equations: Graphs

1.
2.
3.

The graph of the parametric equations is in red and the graph of the rectangular equation is drawn in blue dots on top of the parametric equations.

10.8 Vectors

1.
2.

3u= 15,12 3u= 15,12

3.

u=8i11j u=8i11j

4.

v= 34 cos(59°)i+ 34 sin(59°)j v= 34 cos(59°)i+ 34 sin(59°)j

Magnitude = 34 34

θ= tan 1 ( 5 3 )=59.04° θ= tan 1 ( 5 3 )=59.04°

10.1 Section Exercises

1.

The altitude extends from any vertex to the opposite side or to the line containing the opposite side at a 90° angle.

3.

When the known values are the side opposite the missing angle and another side and its opposite angle.

5.

A triangle with two given sides and a non-included angle.

7.

β=72°,a12.0,b19.9 β=72°,a12.0,b19.9

9.

γ=20°,b4.5,c1.6 γ=20°,b4.5,c1.6

11.

b3.78 b3.78

13.

c13.70 c13.70

15.

one triangle, α50.3°,β16.7°,a26.7 α50.3°,β16.7°,a26.7

17.

two triangles, γ54.3°,β90.7°,b20.9 γ54.3°,β90.7°,b20.9 or γ 125.7°, β 19.3°, b 6.9 γ 125.7°, β 19.3°, b 6.9

19.

two triangles, β75.7°,γ61.3°,b9.9 β75.7°,γ61.3°,b9.9 or β 18.3°, γ 118.7°, b 3.2 β 18.3°, γ 118.7°, b 3.2

21.

two triangles, α143.2°,β26.8°,a17.3 α143.2°,β26.8°,a17.3 or α 16.8°, β 153.2°, a 8.3 α 16.8°, β 153.2°, a 8.3

23.

no triangle possible

25.

A47.8° A47.8° or A 132.2° A 132.2°

27.

8.6 8.6

29.

370.9 370.9

31.

12.3 12.3

33.

12.2 12.2

35.

16.0 16.0

37.

29.7° 29.7°

39.

x=76.9°orx=103.1° x=76.9°orx=103.1°

41.

110.6° 110.6°

43.

A39.4,C47.6,BC20.7 A39.4,C47.6,BC20.7

45.

57.1 57.1

47.

42.0 42.0

49.

430.2 430.2

51.

10.1 10.1

53.

AD13.8 AD13.8

55.

AB2.8 AB2.8

57.

L49.7,N56.3,LN5.8 L49.7,N56.3,LN5.8

59.

51.4 feet

61.

The distance from the satellite to station A A is approximately 1716 miles. The satellite is approximately 1706 miles above the ground.

63.

2.6 ft

65.

5.6 km

67.

371 ft

69.

5936 ft

71.

24.1 ft

73.

19,056 ft2

75.

445,624 square miles

77.

8.65 ft2

10.2 Section Exercises

1.

two sides and the angle opposite the missing side.

3.

s s is the semi-perimeter, which is half the perimeter of the triangle.

5.

The Law of Cosines must be used for any oblique (non-right) triangle.

7.

11.3

9.

34.7

11.

26.7

13.

257.4

15.

not possible

17.

95.5°

19.

26.9°

21.

B45.9°,C99.1°,a6.4 B45.9°,C99.1°,a6.4

23.

A20.6°,B38.4°,c51.1 A20.6°,B38.4°,c51.1

25.

A37.8°,B43.8,C98.4° A37.8°,B43.8,C98.4°

27.

177.56 in2

29.

0.04 m2

31.

0.91 yd2

33.

3.0

35.

29.1

37.

0.5

39.

70.7°

41.

77.4°

43.

25.0

45.

9.3

47.

43.52

49.

1.41

51.

0.14

53.

18.3

55.

48.98

57.
59.

7.62

61.

85.1

63.

24.0 km

65.

99.9 ft

67.

37.3 miles

69.

2371 miles

71.
73.

292.4 miles

75.

65.4 cm2

77.

468 ft2

10.3 Section Exercises

1.

For polar coordinates, the point in the plane depends on the angle from the positive x-axis and distance from the origin, while in Cartesian coordinates, the point represents the horizontal and vertical distances from the origin. For each point in the coordinate plane, there is one representation, but for each point in the polar plane, there are infinite representations.

3.

Determine θ θ for the point, then move r r units from the pole to plot the point. If r r is negative, move r r units from the pole in the opposite direction but along the same angle. The point is a distance of r r away from the origin at an angle of θ θ from the polar axis.

5.

The point ( 3, π 2 ) ( 3, π 2 ) has a positive angle but a negative radius and is plotted by moving to an angle of π 2 π 2 and then moving 3 units in the negative direction. This places the point 3 units down the negative y-axis. The point ( 3, π 2 ) ( 3, π 2 ) has a negative angle and a positive radius and is plotted by first moving to an angle of π 2 π 2 and then moving 3 units down, which is the positive direction for a negative angle. The point is also 3 units down the negative y-axis.

7.

( 5,0 ) ( 5,0 )

9.

( 3 3 2 , 3 2 ) ( 3 3 2 , 3 2 )

11.

( 2 5 ,0.464 ) ( 2 5 ,0.464 )

13.

( 34 ,5.253 ) ( 34 ,5.253 )

15.

( 8 2 , π 4 ) ( 8 2 , π 4 )

17.

r=4cscθ r=4cscθ

19.

r= sinθ 2co s 4 θ 3 r= sinθ 2co s 4 θ 3

21.

r=3cosθ r=3cosθ

23.

r= 3sinθ cos( 2θ ) r= 3sinθ cos( 2θ )

25.

r= 9sinθ cos 2 θ r= 9sinθ cos 2 θ

27.

r= 1 9cosθsinθ r= 1 9cosθsinθ

29.

x 2 + y 2 =4x x 2 + y 2 =4x or ( x2 ) 2 4 + y 2 4 =1; ( x2 ) 2 4 + y 2 4 =1; circle

31.

3y+x=6; 3y+x=6; line

33.

y=3; y=3; line

35.

xy=4; xy=4; hyperbola

37.

x 2 + y 2 =4; x 2 + y 2 =4; circle

39.

x5y=3; x5y=3; line

41.

( 3, 3π 4 ) ( 3, 3π 4 )

43.

( 5,π ) ( 5,π )

45.
47.
49.
51.
53.
55.

r= 6 5cosθsinθ r= 6 5cosθsinθ

57.

r=2sinθ r=2sinθ

59.

r= 2 cosθ r= 2 cosθ

61.

r=3cosθ r=3cosθ

63.

x 2 + y 2 =16 x 2 + y 2 =16

65.

y=x y=x

67.

x 2 + ( y+5 ) 2 =25 x 2 + ( y+5 ) 2 =25

69.

( 1.618,1.176 ) ( 1.618,1.176 )

71.

( 10.630,131.186° ) ( 10.630,131.186° )

73.

( 2,3.14 )or( 2,π ) ( 2,3.14 )or( 2,π )

75.

A vertical line with a a units left of the y-axis. 

77.

A horizontal line with a a units below the x-axis.

79.
81.
83.

10.4 Section Exercises

1.

Symmetry with respect to the polar axis is similar to symmetry about the x x -axis, symmetry with respect to the pole is similar to symmetry about the origin, and symmetric with respect to the line θ= π 2 θ= π 2 is similar to symmetry about the y y -axis.

3.

Test for symmetry; find zeros, intercepts, and maxima; make a table of values. Decide the general type of graph, cardioid, limaçon, lemniscate, etc., then plot points at θ=0, π 2 , θ=0, π 2 , ππ and  3π 2 , 3π 2 , and sketch the graph.

5.

The shape of the polar graph is determined by whether or not it includes a sine, a cosine, and constants in the equation.

7.

symmetric with respect to the polar axis

9.

symmetric with respect to the polar axis, symmetric with respect to the line θ= π 2 , θ= π 2 , symmetric with respect to the pole

11.

no symmetry

13.

no symmetry

15.

symmetric with respect to the pole

17.

circle

19.

cardioid

21.

cardioid

23.

one-loop/dimpled limaçon

25.

one-loop/dimpled limaçon

27.

inner loop/two-loop limaçon

29.

inner loop/two-loop limaçon

31.

inner loop/two-loop limaçon

33.

lemniscate

35.

lemniscate

37.

rose curve

39.

rose curve

41.

Archimedes’ spiral

43.

Archimedes’ spiral

45.
47.
49.
51.
53.
55.

They are both spirals, but not quite the same.

57.

Both graphs are curves with 2 loops. The equation with a coefficient of θ θ has two loops on the left, the equation with a coefficient of 2 has two loops side by side. Graph these from 0 to 4π 4π to get a better picture.

59.

When the width of the domain is increased, more petals of the flower are visible.

61.

The graphs are three-petal, rose curves. The larger the coefficient, the greater the curve’s distance from the pole.

63.

The graphs are spirals. The smaller the coefficient, the tighter the spiral.

65.

( 4, π 3 ),( 4, 5π 3 ) ( 4, π 3 ),( 4, 5π 3 )

67.

( 3 2 , π 3 ),( 3 2 , 5π 3 ) ( 3 2 , π 3 ),( 3 2 , 5π 3 )

69.

( 0, π 2 ),( 0,π ),( 0, 3π 2 ),( 0,2π ) ( 0, π 2 ),( 0,π ),( 0, 3π 2 ),( 0,2π )

71.

( 8 4 2 , π 4 ),( 8 4 2 , 5π 4 ) ( 8 4 2 , π 4 ),( 8 4 2 , 5π 4 ) and at θ= 3π 4 , θ= 3π 4 , 7π 4 7π 4 since r r is squared

10.5 Section Exercises

1.

a is the real part, b is the imaginary part, and i= 1 i= 1

3.

Polar form converts the real and imaginary part of the complex number in polar form using x=rcosθ x=rcosθ and y=rsinθ. y=rsinθ.

5.

z n = r n ( cos( nθ )+isin( nθ ) ) z n = r n ( cos( nθ )+isin( nθ ) ) It is used to simplify polar form when a number has been raised to a power.

7.

5 2 5 2

9.

38 38

11.

14.45 14.45

13.

4 5 cis( 333.4° ) 4 5 cis( 333.4° )

15.

2cis( π 6 ) 2cis( π 6 )

17.

7 3 2 +i 7 2 7 3 2 +i 7 2

19.

2 3 2i 2 3 2i

21.

1.5i 3 3 2 1.5i 3 3 2

23.

4 3 cis( 198° ) 4 3 cis( 198° )

25.

3 4 cis( 180° ) 3 4 cis( 180° )

27.

5 3 cis( 17π 24 ) 5 3 cis( 17π 24 )

29.

7cis( 70° ) 7cis( 70° )

31.

5cis( 80° ) 5cis( 80° )

33.

5cis( π 3 ) 5cis( π 3 )

35.

125cis( 135° ) 125cis( 135° )

37.

9cis( 240° ) 9cis( 240° )

39.

cis( 3π 4 ) cis( 3π 4 )

41.

3cis( 80° ),3cis( 200° ),3cis( 320° ) 3cis( 80° ),3cis( 200° ),3cis( 320° )

43.

2 4 3 cis( 2π 9 ),2 4 3 cis( 8π 9 ),2 4 3 cis( 14π 9 ) 2 4 3 cis( 2π 9 ),2 4 3 cis( 8π 9 ),2 4 3 cis( 14π 9 )

45.

2 2 cis( 7π 8 ),2 2 cis( 15π 8 ) 2 2 cis( 7π 8 ),2 2 cis( 15π 8 )

47.
49.
51.
53.
55.
57.

3.61 e 0.59i 3.61 e 0.59i

59.

2+3.46i 2+3.46i

61.

4.332.50i 4.332.50i

10.6 Section Exercises

1.

A pair of functions that is dependent on an external factor. The two functions are written in terms of the same parameter. For example, x=f( t ) x=f( t ) and y=f( t ). y=f( t ).

3.

Choose one equation to solve for t, t, substitute into the other equation and simplify.

5.

Some equations cannot be written as functions, like a circle. However, when written as two parametric equations, separately the equations are functions.

7.

y=2+2x y=2+2x

9.

y=3 x1 2 y=3 x1 2

11.

x=2 e 1y 5 x=2 e 1y 5 or y=15ln( x 2 ) y=15ln( x 2 )

13.

x=4log( y3 2 ) x=4log( y3 2 )

15.

x= ( y 2 ) 3 y 2 x= ( y 2 ) 3 y 2

17.

y= x 3 y= x 3

19.

( x 4 ) 2 + ( y 5 ) 2 =1 ( x 4 ) 2 + ( y 5 ) 2 =1

21.

y 2 =1 1 2 x y 2 =1 1 2 x

23.

y= x 2 +2x+1 y= x 2 +2x+1

25.

y= ( x+1 2 ) 3 2 y= ( x+1 2 ) 3 2

27.

y=3x+14 y=3x+14

29.

y=x+3 y=x+3

31.

{ x( t )=t y( t )=2sint+1 { x( t )=t y( t )=2sint+1

33.

{ x( t )= t +2t y( t )=t { x( t )= t +2t y( t )=t

35.

{ x( t )=4cost y( t )=6sint ; { x( t )=4cost y( t )=6sint ; Ellipse

37.

{ x( t )= 10 cost y( t )= 10 sint ; { x( t )= 10 cost y( t )= 10 sint ; Circle

39.

{ x( t )=1+4t y( t )=2t { x( t )=1+4t y( t )=2t

41.

{ x( t )=4+2t y( t )=13t { x( t )=4+2t y( t )=13t

43.

yes, at t=2 t=2

45.
t t x x y y
1 -3 1
2 0 7
3 5 17
47.

answers may vary: { x( t )=t1 y( t )= t 2  and { x( t )=t+1 y( t )= ( t+2 ) 2 { x( t )=t1 y( t )= t 2  and { x( t )=t+1 y( t )= ( t+2 ) 2

49.

answers may vary: , { x( t )=t y( t )= t 2 4t+4  and { x( t )=t+2 y( t )= t 2 { x( t )=t y( t )= t 2 4t+4  and { x( t )=t+2 y( t )= t 2

10.7 Section Exercises

1.

plotting points with the orientation arrow and a graphing calculator

3.

The arrows show the orientation, the direction of motion according to increasing values of t. t.

5.

The parametric equations show the different vertical and horizontal motions over time.

7.
9.
11.
13.
15.
17.
19.
21.
23.
25.
27.
29.
31.
33.
35.
37.
39.

There will be 100 back-and-forth motions.

41.

Take the opposite of the x( t ) x( t ) equation.

43.

The parabola opens up.

45.

{ x( t )=5cost y( t )=5sint { x( t )=5cost y( t )=5sint

47.
49.
51.
53.

a=4, a=4, b=3,b=3, c=6,c=6, d=1 d=1

55.

a=4, a=4, b=2,b=2, c=3,c=3, d=3 d=3

57.
59.
61.

The y y -intercept changes.

63.

y( x )=16 ( x 15 ) 2 +20( x 15 ) y( x )=16 ( x 15 ) 2 +20( x 15 )

65.

{ x(t)=64tcos( 52° ) y(t)=16 t 2 +64tsin( 52° ) { x(t)=64tcos( 52° ) y(t)=16 t 2 +64tsin( 52° )

67.

approximately 3.2 seconds

69.

1.6 seconds

71.
73.

10.8 Section Exercises

1.

lowercase, bold letter, usually u,v,w u,v,w

3.

They are unit vectors. They are used to represent the horizontal and vertical components of a vector. They each have a magnitude of 1.

5.

The first number always represents the coefficient of the i, i, and the second represents the j. j.

7.

7,5 7,5

9.

not equal

11.

equal

13.

equal

15.

7i3j 7i3j

17.

6i2j 6i2j

19.

u+v= 5,5 ,uv= 1,3 ,2u3v= 0,5 u+v= 5,5 ,uv= 1,3 ,2u3v= 0,5

21.

10i4j 10i4j

23.

2 29 29 i+ 5 29 29 j 2 29 29 i+ 5 29 29 j

25.

2 229 229 i+ 15 229 229 j 2 229 229 i+ 15 229 229 j

27.

7 2 10 i+ 2 10 j 7 2 10 i+ 2 10 j

29.

| v |=7.810,θ=39.806° | v |=7.810,θ=39.806°

31.

| v |=7.211,θ=236.310° | v |=7.211,θ=236.310°

33.

6 6

35.

12 12

37.
39.
41.
43.
45.
47.

4,1 4,1

49.

v=7i+3j v=7i+3j

51.

3 2 i+3 2 j 3 2 i+3 2 j

53.

i 3 j i 3 j

55.
  1. 58.7
  2. 12.5
57.

x=7.13 x=7.13 pounds, y=3.63 y=3.63 pounds

59.

x=2.87 x=2.87 pounds, y=4.10 y=4.10 pounds

61.

4.635 miles, 17.764° N of E

63.

17 miles. 10.318 miles

65.

Distance: 2.868. Direction: 86.474° North of West, or 3.526° West of North

67.

4.924°. 659 km/hr

69.

4.424°

71.

( 0.081,8.602 ) ( 0.081,8.602 )

73.

21.801°, relative to the car’s forward direction

75.

parallel: 16.28, perpendicular: 47.28 pounds

77.

19.35 pounds, 231.54° from the horizontal

79.

5.1583 pounds, 75.8° from the horizontal

Review Exercises

1.

Not possible

3.

C=120°,a=23.1,c=34.1 C=120°,a=23.1,c=34.1

5.

distance of the plane from point A: A: 2.2 km, elevation of the plane: 1.6 km

7.

b=71.0°,C=55.0°,a=12.8 b=71.0°,C=55.0°,a=12.8

9.

40.6 km

11.


13.

( 0,2 ) ( 0,2 )

15.

( 9.8489,203.96° ) ( 9.8489,203.96° )

17.

r=8 r=8

19.

x 2 + y 2 =7x x 2 + y 2 =7x

21.

y=x y=x

23.

symmetric with respect to the line θ= π 2 θ= π 2

25.


27.


29.

5

31.

cis( π 3 ) cis( π 3 )

33.

2.3+1.9i 2.3+1.9i

35.

60cis( π 2 ) 60cis( π 2 )

37.

3cis( 4π 3 ) 3cis( 4π 3 )

39.

25cis( 3π 2 ) 25cis( 3π 2 )

41.

5cis( 3π 4 ),5cis( 7π 4 ) 5cis( 3π 4 ),5cis( 7π 4 )

43.
45.

x 2 + 1 2 y=1 x 2 + 1 2 y=1

47.

{ x( t )=2+6t y( t )=3+4t { x( t )=2+6t y( t )=3+4t

49.

y=2 x 5 y=2 x 5

51.
  1. { x( t )=( 80cos( 40° ) )t y( t )=16 t 2 +( 80sin( 40° ) )t+4 { x( t )=( 80cos( 40° ) )t y( t )=16 t 2 +( 80sin( 40° ) )t+4
  2. The ball is 14 feet high and 184 feet from where it was launched.
  3. 3.3 seconds
53.

not equal

55.

4i

57.

3 10 10 3 10 10 i 10 10 10 10 j

59.

Magnitude: 3 2 , 3 2 , Direction: 225° 225°

61.

16 16

63.


Practice Test

1.

α=67.1°,γ=44.9°,a=20.9 α=67.1°,γ=44.9°,a=20.9

3.

1712 miles 1712 miles

5.

( 1, 3 ) ( 1, 3 )

7.

y=3 y=3

9.


11.

106 106

13.

5 2 +i 5 3 2 5 2 +i 5 3 2

15.

4cis( 21° ) 4cis( 21° )

17.

2 2 cis( 18° ),2 2 cis( 198° ) 2 2 cis( 18° ),2 2 cis( 198° )

19.

y=2 ( x1 ) 2 y=2 ( x1 ) 2

21.


23.

−4i − 15j

25.

2 13 13 i+ 3 13 13 j 2 13 13 i+ 3 13 13 j

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:

    Access for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites

  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:

    Access for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites

Citation information

© Dec 8, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.