Algebra and Trigonometry

# Chapter 8

Algebra and TrigonometryChapter 8

## 8.1Graphs of the Sine and Cosine Functions

1.

$6π 6π$

2.

$1 2 1 2$ compressed

3.

$π 2 ; π 2 ;$ right

4.

2 units up

5.

midline: $y=0; y=0;$ amplitude: $| A |= 1 2 ; | A |= 1 2 ;$ period: $P= 2π | B | =6π; P= 2π | B | =6π;$ phase shift: $C B =π C B =π$

6.

$f( x )=sin(x)+2 f( x )=sin(x)+2$

7.

two possibilities: $y=4sin( π 5 x− π 5 )+4 y=4sin( π 5 x− π 5 )+4$ or $y=−4sin( π 5 x+ 4π 5 )+4 y=−4sin( π 5 x+ 4π 5 )+4$

8.

midline: $y=0; y=0;$ amplitude: $| A |=0.8; | A |=0.8;$ period: $P= 2π | B | =π; P= 2π | B | =π;$ phase shift: $C B =0 C B =0$ or none

9.

midline: $y=0; y=0;$ amplitude: $| A |=2; | A |=2;$ period: $P= 2π | B | =6; P= 2π | B | =6;$ phase shift: $C B =− 1 2 C B =− 1 2$

10.

7

11.

$y=3cos( x )−4 y=3cos( x )−4$

## 8.2Graphs of the Other Trigonometric Functions

1.
2.

It would be reflected across the line $y=−1, y=−1,$ becoming an increasing function.

3.

$g(x)=4tan(2x) g(x)=4tan(2x)$

4.

This is a vertical reflection of the preceding graph because $A A$ is negative.

5.
6.
7.

## 8.3Inverse Trigonometric Functions

1.

$arccos(0.8776)≈0.5 arccos(0.8776)≈0.5$

2.
1. $− π 2 ; − π 2 ;$
2. $− π 4 ; − π 4 ;$
3. $π; π;$
4. $π 3 π 3$
3.

1.9823 or 113.578°

4.

$sin −1 (0.6)=36.87°=0.6435 sin −1 (0.6)=36.87°=0.6435$ radians

5.

$π 8 ; 2π 9 π 8 ; 2π 9$

6.

$3π 4 3π 4$

7.

$12 13 12 13$

8.

$4 2 9 4 2 9$

9.

$4x 16 x 2 +1 4x 16 x 2 +1$

## 8.1 Section Exercises

1.

The sine and cosine functions have the property that $f( x+P )=f( x ) f( x+P )=f( x )$ for a certain $P. P.$ This means that the function values repeat for every $P P$ units on the x-axis.

3.

The absolute value of the constant $A A$ (amplitude) increases the total range and the constant $D D$ (vertical shift) shifts the graph vertically.

5.

At the point where the terminal side of $t t$ intersects the unit circle, you can determine that the $sint sint$ equals the y-coordinate of the point.

7.

amplitude: $2 3 ; 2 3 ;$ period: $2π; 2π;$ midline: $y=0; y=0;$ maximum: $y= 2 3 y= 2 3$ occurs at $x=0; x=0;$ minimum: $y=− 2 3 y=− 2 3$ occurs at $x=π; x=π;$ for one period, the graph starts at 0 and ends at $2π 2π$

9.

amplitude: 4; period: $2π; 2π;$ midline: $y=0; y=0;$ maximum $y=4 y=4$ occurs at $x= π 2 ; x= π 2 ;$ minimum: $y=−4 y=−4$ occurs at $x= 3π 2 ; x= 3π 2 ;$ one full period occurs from $x=0 x=0$ to $x=2π x=2π$

11.

amplitude: 1; period: $π; π;$ midline: $y=0; y=0;$ maximum: $y=1 y=1$ occurs at $x=π; x=π;$ minimum: $y=−1 y=−1$ occurs at $x= π 2 ; x= π 2 ;$ one full period is graphed from $x=0 x=0$ to $x=π x=π$

13.

amplitude: 4; period: 2; midline: $y=0; y=0;$ maximum: $y=4 y=4$ occurs at $x=0; x=0;$ minimum: $y=−4 y=−4$ occurs at $x=1 x=1$

15.

amplitude: 3; period: $π 4 ; π 4 ;$ midline: $y=5; y=5;$ maximum: $y=8 y=8$ occurs at $x=0.12; x=0.12;$ minimum: $y=2 y=2$ occurs at $x=0.516; x=0.516;$ horizontal shift: $−4; −4;$ vertical translation 5; one period occurs from $x=0 x=0$ to $x= π 4 x= π 4$

17.

amplitude: 5; period: $2π 5 ; 2π 5 ;$ midline: $y=−2; y=−2;$ maximum: $y=3 y=3$ occurs at $x=0.08; x=0.08;$ minimum: $y=−7 y=−7$ occurs at $x=0.71; x=0.71;$ phase shift: $−4; −4;$ vertical translation: $−2; −2;$ one full period can be graphed on $x=0 x=0$ to $x= 2π 5 x= 2π 5$

19.

amplitude: 1 ; period: $2π; 2π;$ midline: $y=1; y=1;$ maximum: $y=2 y=2$ occurs at $x=2.09; x=2.09;$ maximum: $y=2 y=2$ occurs at $t=2.09; t=2.09;$ minimum: $y=0 y=0$ occurs at $t=5.24; t=5.24;$ phase shift: $− π 3 ; − π 3 ;$ vertical translation: 1; one full period is from $t=0 t=0$ to $t=2π t=2π$

21.

amplitude: 1; period: $4π; 4π;$ midline: $y=0; y=0;$ maximum: $y=1 y=1$ occurs at $t=11.52; t=11.52;$ minimum: $y=−1 y=−1$ occurs at $t=5.24; t=5.24;$ phase shift: $− 10π 3 ; − 10π 3 ;$ vertical shift: 0

23.

amplitude: 2; midline: $y=−3; y=−3;$ period: 4; equation: $f(x)=2sin( π 2 x )−3 f(x)=2sin( π 2 x )−3$

25.

amplitude: 2; period: 5; midline: $y=3; y=3;$ equation: $f(x)=−2cos( 2π 5 x )+3 f(x)=−2cos( 2π 5 x )+3$

27.

amplitude: 4; period: 2; midline: $y=0; y=0;$ equation: $f(x)=−4cos( π( x− π 2 ) ) f(x)=−4cos( π( x− π 2 ) )$

29.

amplitude: 2; period: 2; midline $y=1; y=1;$ equation: $f( x )=2cos( πx )+1 f( x )=2cos( πx )+1$

31.

$0,π 0,π$

33.

$sin(π2)=1 sin(π2)=1$

35.

$π2 π2$

37.

$f(x)=sinx f(x)=sinx$ is symmetric

39.

$π3,5π3 π3,5π3$

41.

Maximum: $1 1$ at $x= 0 x=0$ ; minimum: $-1 -1$ at $x= π x=π$

43.

A linear function is added to a periodic sine function. The graph does not have an amplitude because as the linear function increases without bound the combined function $h(x)=x+sinx h(x)=x+sinx$ will increase without bound as well. The graph is bounded between the graphs of $y=x+1 y=x+1$ and $y=x-1 y=x-1$ because sine oscillates between −1 and 1.

45.

There is no amplitude because the function is not bounded.

47.

The graph is symmetric with respect to the y-axis and there is no amplitude because the function’s bounds decrease as $|x| |x|$ grows. There appears to be a horizontal asymptote at $y=0 y=0$ .

## 8.2 Section Exercises

1.

Since $y=cscx y=cscx$ is the reciprocal function of $y=sinx, y=sinx,$ you can plot the reciprocal of the coordinates on the graph of $y=sinx y=sinx$ to obtain the y-coordinates of $y=cscx. y=cscx.$ The x-intercepts of the graph $y=sinx y=sinx$ are the vertical asymptotes for the graph of $y=cscx. y=cscx.$

3.

Answers will vary. Using the unit circle, one can show that $tan( x+π )=tanx. tan( x+π )=tanx.$

5.

The period is the same: $2π. 2π.$

7.

IV

9.

III

11.

period: 8; horizontal shift: 1 unit to left

13.

1.5

15.

5

17.

$−cotxcosx−sinx −cotxcosx−sinx$

19.

stretching factor: 2; period: $π 4 ; π 4 ;$ asymptotes:

21.

stretching factor: 6; period: 6; asymptotes:

23.

stretching factor: 1; period: $π; π;$ asymptotes:

25.

Stretching factor: 1; period: $π; π;$ asymptotes:

27.

stretching factor: 2; period: $2π; 2π;$ asymptotes:

29.

stretching factor: 4; period: $2π 3 ; 2π 3 ;$ asymptotes:

31.

stretching factor: 7; period: $2π 5 ; 2π 5 ;$ asymptotes:

33.

stretching factor: 2; period: $2π; 2π;$ asymptotes:

35.

stretching factor: $7 5 ; 7 5 ;$ period: $2π; 2π;$ asymptotes:

37.

$y=tan( 3( x− π 4 ) )+2 y=tan( 3( x− π 4 ) )+2$

39.

$f( x )=csc( 2x ) f( x )=csc( 2x )$

41.

$f( x )=csc( 4x ) f( x )=csc( 4x )$

43.

$f( x )=2cscx f( x )=2cscx$

45.

$f(x)= 1 2 tan(100πx) f(x)= 1 2 tan(100πx)$

47.
49.
51.
53.
55.
1. $( − π 2 , π 2 ); ( − π 2 , π 2 );$
2. $x=− π 2 x=− π 2$ and $x= π 2 ; x= π 2 ;$ the distance grows without bound as $| x | | x |$ approaches $π 2 π 2$ —i.e., at right angles to the line representing due north, the boat would be so far away, the fisherman could not see it;
3. 3; when $x=− π 3 , x=− π 3 ,$ the boat is 3 km away;
4. 1.73; when $x= π 6 , x= π 6 ,$ the boat is about 1.73 km away;
5. 1.5 km; when $x=0 x=0$
57.
1. $h( x )=2tan( π 120 x ); h( x )=2tan( π 120 x );$
2. $h( 0 )=0: h( 0 )=0:$ after 0 seconds, the rocket is 0 mi above the ground; $h( 30 )=2: h( 30 )=2:$ after 30 seconds, the rockets is 2 mi high;
3. As $x x$ approaches 60 seconds, the values of $h( x ) h( x )$ grow increasingly large. The distance to the rocket is growing so large that the camera can no longer track it.

## 8.3 Section Exercises

1.

The function $y=sinx y=sinx$ is one-to-one on $[ − π 2 , π 2 ]; [ − π 2 , π 2 ];$ thus, this interval is the range of the inverse function of $y=sinx, y=sinx,$ $f(x)= sin −1 x. f(x)= sin −1 x.$ The function $y=cosx y=cosx$ is one-to-one on $[ 0,π ]; [ 0,π ];$ thus, this interval is the range of the inverse function of $y=cosx,f(x)= cos −1 x. y=cosx,f(x)= cos −1 x.$

3.

$π 6 π 6$ is the radian measure of an angle between $− π 2 − π 2$ and $π 2 π 2$ whose sine is 0.5.

5.

In order for any function to have an inverse, the function must be one-to-one and must pass the horizontal line test. The regular sine function is not one-to-one unless its domain is restricted in some way. Mathematicians have agreed to restrict the sine function to the interval $[ − π 2 , π 2 ] [ − π 2 , π 2 ]$ so that it is one-to-one and possesses an inverse.

7.

True . The angle, $θ 1 θ 1$ that equals $arccos(−x) arccos(−x)$, $x>0 x>0$, will be a second quadrant angle with reference angle, $θ 2 θ 2$, where $θ 2 θ 2$ equals $arccosx arccosx$, $x>0 x>0$. Since $θ 2 θ 2$ is the reference angle for $θ 1 θ 1$, $θ 2 =π− θ 1 θ 2 =π− θ 1$ and $arccos(−x) arccos(−x)$ = $π−arccosx π−arccosx$-

9.

$− π 6 − π 6$

11.

$3π 4 3π 4$

13.

$− π 3 − π 3$

15.

$π 3 π 3$

17.

1.98

19.

0.93

21.

1.41

23.

25.

0

27.

0.71

29.

-0.71

31.

$− π 4 − π 4$

33.

0.8

35.

$5 13 5 13$

37.

$x−1 − x 2 +2x x−1 − x 2 +2x$

39.

$x 2 −1 x x 2 −1 x$

41.

$x+0.5 − x 2 −x+ 3 4 x+0.5 − x 2 −x+ 3 4$

43.

$2x+1 x+1 2x+1 x+1$

45.

$2x+1 x 2x+1 x$

47.

$t t$

49.

domain $[ −1,1 ]; [ −1,1 ];$ range $[ 0,π ] [ 0,π ]$

51.

approximately $x=0.00 x=0.00$

53.

55.

57.

59.

61.

No. The angle the ladder makes with the horizontal is 60 degrees.

## Review Exercises

1.

amplitude: 3; period: $2π; 2π;$ midline: $y=3; y=3;$ no asymptotes

3.

amplitude: 3; period: $2π; 2π;$ midline: $y=0; y=0;$ no asymptotes

5.

amplitude: 3; period: $2π; 2π;$ midline: $y=−4; y=−4;$ no asymptotes

7.

amplitude: 6; period: $2π 3 ; 2π 3 ;$ midline: $y=−1; y=−1;$ no asymptotes

9.

stretching factor: none; period: $π; π;$ midline: $y=−4; y=−4;$ asymptotes: $x= π 2 +πk, x= π 2 +πk,$ where $k k$ is an integer

11.

stretching factor: 3; period: $π 4 ; π 4 ;$ midline: $y=−2; y=−2;$ asymptotes: $x= π 8 + π 4 k, x= π 8 + π 4 k,$ where $k k$ is an integer

13.

amplitude: none; period: $2π; 2π;$ no phase shift; asymptotes: $x= π 2 k, x= π 2 k,$ where $k k$ is an odd integer

15.

amplitude: none; period: $2π 5 ; 2π 5 ;$ no phase shift; asymptotes: $x= π 5 k, x= π 5 k,$ where $k k$ is an integer

17.

amplitude: none; period: $4π; 4π;$ no phase shift; asymptotes: $x=2πk, x=2πk,$ where $k k$ is an integer

19.

largest: 20,000; smallest: 4,000

21.

amplitude: 8,000; period: 10; phase shift: 0

23.

In 2007, the predicted population is 4,413. In 2010, the population will be 11,924.

25.

5 in.

27.

10 seconds

29.

$π 6 π 6$

31.

$π 4 π 4$

33.

$π 3 π 3$

35.

No solution

37.

$12 5 12 5$

39.

The graphs are not symmetrical with respect to the line $y=x. y=x.$ They are symmetrical with respect to the $y y$-axis.

41.

The graphs appear to be identical.

## Practice Test

1.

amplitude: 0.5; period: $2π; 2π;$ midline $y=0 y=0$

3.

amplitude: 5; period: $2π; 2π;$ midline: $y=0 y=0$

5.

amplitude: 1; period: $2π; 2π;$ midline: $y=1 y=1$

7.

amplitude: 3; period: $6π; 6π;$ midline: $y=0 y=0$

9.

amplitude: none; period: $π; π;$ midline: $y=0, y=0,$ asymptotes: $x= 2π 3 +πk, x= 2π 3 +πk,$ where $k k$ is an integer

11.

amplitude: none; period: $2π 3 ; 2π 3 ;$ midline: $y=0, y=0,$ asymptotes: $x= π 3 k, x= π 3 k,$ where $k k$ is an integer

13.

amplitude: none; period: $2π; 2π;$ midline: $y=−3 y=−3$

15.

amplitude: 2; period: 2; midline: $y=0; y=0;$ $f( x )=2sin( π( x−1 ) ) f( x )=2sin( π( x−1 ) )$

17.

amplitude: 1; period: 12; phase shift: $−6; −6;$ midline $y=−3 y=−3$

19.

$D( t )=68−12sin( π 12 x ) D( t )=68−12sin( π 12 x )$

21.

period: $π 6 ; π 6 ;$ horizontal shift: $−7 −7$

23.

$f( x )=sec( πx ); f( x )=sec( πx );$ period: 2; phase shift: 0

25.

$4 4$

27.

The views are different because the period of the wave is $1 25 . 1 25 .$ Over a bigger domain, there will be more cycles of the graph.

29.

$3 5 3 5$

31.

On the approximate intervals $( 0.5,1 ),( 1.6,2.1 ),( 2.6,3.1 ),( 3.7,4.2 ),( 4.7,5.2 ),(5.6,6.28) ( 0.5,1 ),( 1.6,2.1 ),( 2.6,3.1 ),( 3.7,4.2 ),( 4.7,5.2 ),(5.6,6.28)$

33.

$f( x )=2cos( 12( x+ π 4 ) )+3 f( x )=2cos( 12( x+ π 4 ) )+3$

35.

This graph is periodic with a period of $2π. 2π.$

37.

$π 3 π 3$

39.

$π 2 π 2$

41.

$1− ( 1−2x ) 2 1− ( 1−2x ) 2$

43.

$1 1+ x 4 1 1+ x 4$

45.

$x+1 x x+1 x$

47.

False

49.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

• If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
• If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution: