Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Menu
Table of contents
  1. Preface
  2. Thermodynamics
    1. 1 Temperature and Heat
      1. Introduction
      2. 1.1 Temperature and Thermal Equilibrium
      3. 1.2 Thermometers and Temperature Scales
      4. 1.3 Thermal Expansion
      5. 1.4 Heat Transfer, Specific Heat, and Calorimetry
      6. 1.5 Phase Changes
      7. 1.6 Mechanisms of Heat Transfer
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    2. 2 The Kinetic Theory of Gases
      1. Introduction
      2. 2.1 Molecular Model of an Ideal Gas
      3. 2.2 Pressure, Temperature, and RMS Speed
      4. 2.3 Heat Capacity and Equipartition of Energy
      5. 2.4 Distribution of Molecular Speeds
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    3. 3 The First Law of Thermodynamics
      1. Introduction
      2. 3.1 Thermodynamic Systems
      3. 3.2 Work, Heat, and Internal Energy
      4. 3.3 First Law of Thermodynamics
      5. 3.4 Thermodynamic Processes
      6. 3.5 Heat Capacities of an Ideal Gas
      7. 3.6 Adiabatic Processes for an Ideal Gas
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 4 The Second Law of Thermodynamics
      1. Introduction
      2. 4.1 Reversible and Irreversible Processes
      3. 4.2 Heat Engines
      4. 4.3 Refrigerators and Heat Pumps
      5. 4.4 Statements of the Second Law of Thermodynamics
      6. 4.5 The Carnot Cycle
      7. 4.6 Entropy
      8. 4.7 Entropy on a Microscopic Scale
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  3. Electricity and Magnetism
    1. 5 Electric Charges and Fields
      1. Introduction
      2. 5.1 Electric Charge
      3. 5.2 Conductors, Insulators, and Charging by Induction
      4. 5.3 Coulomb's Law
      5. 5.4 Electric Field
      6. 5.5 Calculating Electric Fields of Charge Distributions
      7. 5.6 Electric Field Lines
      8. 5.7 Electric Dipoles
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    2. 6 Gauss's Law
      1. Introduction
      2. 6.1 Electric Flux
      3. 6.2 Explaining Gauss’s Law
      4. 6.3 Applying Gauss’s Law
      5. 6.4 Conductors in Electrostatic Equilibrium
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    3. 7 Electric Potential
      1. Introduction
      2. 7.1 Electric Potential Energy
      3. 7.2 Electric Potential and Potential Difference
      4. 7.3 Calculations of Electric Potential
      5. 7.4 Determining Field from Potential
      6. 7.5 Equipotential Surfaces and Conductors
      7. 7.6 Applications of Electrostatics
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 8 Capacitance
      1. Introduction
      2. 8.1 Capacitors and Capacitance
      3. 8.2 Capacitors in Series and in Parallel
      4. 8.3 Energy Stored in a Capacitor
      5. 8.4 Capacitor with a Dielectric
      6. 8.5 Molecular Model of a Dielectric
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    5. 9 Current and Resistance
      1. Introduction
      2. 9.1 Electrical Current
      3. 9.2 Model of Conduction in Metals
      4. 9.3 Resistivity and Resistance
      5. 9.4 Ohm's Law
      6. 9.5 Electrical Energy and Power
      7. 9.6 Superconductors
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    6. 10 Direct-Current Circuits
      1. Introduction
      2. 10.1 Electromotive Force
      3. 10.2 Resistors in Series and Parallel
      4. 10.3 Kirchhoff's Rules
      5. 10.4 Electrical Measuring Instruments
      6. 10.5 RC Circuits
      7. 10.6 Household Wiring and Electrical Safety
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    7. 11 Magnetic Forces and Fields
      1. Introduction
      2. 11.1 Magnetism and Its Historical Discoveries
      3. 11.2 Magnetic Fields and Lines
      4. 11.3 Motion of a Charged Particle in a Magnetic Field
      5. 11.4 Magnetic Force on a Current-Carrying Conductor
      6. 11.5 Force and Torque on a Current Loop
      7. 11.6 The Hall Effect
      8. 11.7 Applications of Magnetic Forces and Fields
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    8. 12 Sources of Magnetic Fields
      1. Introduction
      2. 12.1 The Biot-Savart Law
      3. 12.2 Magnetic Field Due to a Thin Straight Wire
      4. 12.3 Magnetic Force between Two Parallel Currents
      5. 12.4 Magnetic Field of a Current Loop
      6. 12.5 Ampère’s Law
      7. 12.6 Solenoids and Toroids
      8. 12.7 Magnetism in Matter
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    9. 13 Electromagnetic Induction
      1. Introduction
      2. 13.1 Faraday’s Law
      3. 13.2 Lenz's Law
      4. 13.3 Motional Emf
      5. 13.4 Induced Electric Fields
      6. 13.5 Eddy Currents
      7. 13.6 Electric Generators and Back Emf
      8. 13.7 Applications of Electromagnetic Induction
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    10. 14 Inductance
      1. Introduction
      2. 14.1 Mutual Inductance
      3. 14.2 Self-Inductance and Inductors
      4. 14.3 Energy in a Magnetic Field
      5. 14.4 RL Circuits
      6. 14.5 Oscillations in an LC Circuit
      7. 14.6 RLC Series Circuits
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    11. 15 Alternating-Current Circuits
      1. Introduction
      2. 15.1 AC Sources
      3. 15.2 Simple AC Circuits
      4. 15.3 RLC Series Circuits with AC
      5. 15.4 Power in an AC Circuit
      6. 15.5 Resonance in an AC Circuit
      7. 15.6 Transformers
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    12. 16 Electromagnetic Waves
      1. Introduction
      2. 16.1 Maxwell’s Equations and Electromagnetic Waves
      3. 16.2 Plane Electromagnetic Waves
      4. 16.3 Energy Carried by Electromagnetic Waves
      5. 16.4 Momentum and Radiation Pressure
      6. 16.5 The Electromagnetic Spectrum
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  4. A | Units
  5. B | Conversion Factors
  6. C | Fundamental Constants
  7. D | Astronomical Data
  8. E | Mathematical Formulas
  9. F | Chemistry
  10. G | The Greek Alphabet
  11. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
  12. Index

Check Your Understanding

8.1

1.1 × 10 −3 m 1.1 × 10 −3 m

8.3

3.59 cm, 17.98 cm

8.4

a. 25.0 pF; b. 9.2

8.5

a. C=0.86pF,Q1=10pC,Q2=3.4pC,Q3=6.8pCC=0.86pF,Q1=10pC,Q2=3.4pC,Q3=6.8pC;
b. C=2.3pF,Q1=12pC,Q2=Q3=16pCC=2.3pF,Q1=12pC,Q2=Q3=16pC;
c. C=2.3pF,Q1=9.0pC,Q2=18pC,Q3=12pC,Q4=15pCC=2.3pF,Q1=9.0pC,Q2=18pC,Q3=12pC,Q4=15pC

8.6

a.4.0×10−13J4.0×10−13J; b. 9 times

8.7

a. 3.0; b. C=3.0C0C=3.0C0

8.9

a. C0=20pFC0=20pF, C=42pFC=42pF; b. Q0=0.8nCQ0=0.8nC, Q=1.7nCQ=1.7nC; c. V0=V=40VV0=V=40V; d. U0=16nJU0=16nJ, U=34nJU=34nJ

Conceptual Questions

1.

no; yes

3.

false

5.

no

7.

3.0 μ F , 0.33 μ F 3.0 μ F , 0.33 μ F

9.

answers may vary

11.

Dielectric strength is a critical value of an electrical field above which an insulator starts to conduct; a dielectric constant is the ratio of the electrical field in vacuum to the net electrical field in a material.

13.

Water is a good solvent.

15.

When energy of thermal motion is large (high temperature), an electrical field must be large too in order to keep electric dipoles aligned with it.

17.

answers may vary

Problems

19.

21.6 mC

21.

1.55 V

23.

25.0 nF

25.

1.1 × 10 −3 m 2 1.1 × 10 −3 m 2

27.

500 µC

29.

1:16

31.

a. 1.07 nC; b. 267 V, 133 V

33.

0.29 μ F 0.29 μ F

34.

500 capacitors; connected in parallel

35.

3.08μF3.08μF (series) and 13.0μF13.0μF (parallel)

37.

11.4 μ F 11.4 μ F

39.

0.89 mC; 1.78 mC; 444 V

41.

7.5 μ J 7.5 μ J

43.

a. 405 J; b. 90.0 mC

45.

1.17 J

47.

a. 4.43×109F4.43×109F; b. 0.453 V; c. 4.53×1010J4.53×1010J; d. no

49.

0.7 mJ

51.

a. 7.1 pF; b. 42 pF

53.

a. before 3.00 V; after 0.600 V; b. before 1500 V/m; after 300 V/m

55.

a. 3.91; b. 22.8 V

57.

a. 37 nC; b. 0.4 MV/m; c. 19 nC

59.

a. 4.4μF4.4μF; b. 4.0×10-5C4.0×10-5C

61.

0.0135 m 2 0.0135 m 2

63.

0.185 μ J 0.185 μ J

Additional Problems

65.

a. 0.277 nF; b. 27.7 nC; c. 50 kV/m

67.

a. 0.065 F; b. 23,000 C; c. 4.0 GJ

69.

a. 75.6μC75.6μC; b. 10.8 V

71.

a. 0.13 J; b. no, because of resistive heating in connecting wires that is always present, but the circuit schematic does not indicate resistors

Figure shows a closed circuit with a battery of 400 volts. The positive terminal of the battery is connected to a capacitor of 3 micro Farads, followed by a combination of two capacitors in parallel with each other, followed by a fourth capacitor of value 6 micro Farads, which in turn is connected to the negative terminal of the battery. The capacitors in parallel to each other have values 6 micro Farad and 3 micro Farad.
73.

a. −3.00μF−3.00μF; b. You cannot have a negative C2C2 capacitance. c. The assumption that they were hooked up in parallel, rather than in series, is incorrect. A parallel connection always produces a greater capacitance, while here a smaller capacitance was assumed. This could only happen if the capacitors are connected in series.

75.

a. 14.2 kV; b. The voltage is unreasonably large, more than 100 times the breakdown voltage of nylon. c. The assumed charge is unreasonably large and cannot be stored in a capacitor of these dimensions.

Challenge Problems

77.

a. 89.6 pF; b. 6.09 kV/m; c. 4.47 kV/m; d. no

79.

a. 421 J; b. 53.9 mF

81.

C=ε0A/(d1+d2)C=ε0A/(d1+d2)

83.

proof

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
Citation information

© Apr 5, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.