Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
University Physics Volume 2

Conceptual Questions

University Physics Volume 2Conceptual Questions

Table of contents
  1. Preface
  2. Thermodynamics
    1. 1 Temperature and Heat
      1. Introduction
      2. 1.1 Temperature and Thermal Equilibrium
      3. 1.2 Thermometers and Temperature Scales
      4. 1.3 Thermal Expansion
      5. 1.4 Heat Transfer, Specific Heat, and Calorimetry
      6. 1.5 Phase Changes
      7. 1.6 Mechanisms of Heat Transfer
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    2. 2 The Kinetic Theory of Gases
      1. Introduction
      2. 2.1 Molecular Model of an Ideal Gas
      3. 2.2 Pressure, Temperature, and RMS Speed
      4. 2.3 Heat Capacity and Equipartition of Energy
      5. 2.4 Distribution of Molecular Speeds
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    3. 3 The First Law of Thermodynamics
      1. Introduction
      2. 3.1 Thermodynamic Systems
      3. 3.2 Work, Heat, and Internal Energy
      4. 3.3 First Law of Thermodynamics
      5. 3.4 Thermodynamic Processes
      6. 3.5 Heat Capacities of an Ideal Gas
      7. 3.6 Adiabatic Processes for an Ideal Gas
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 4 The Second Law of Thermodynamics
      1. Introduction
      2. 4.1 Reversible and Irreversible Processes
      3. 4.2 Heat Engines
      4. 4.3 Refrigerators and Heat Pumps
      5. 4.4 Statements of the Second Law of Thermodynamics
      6. 4.5 The Carnot Cycle
      7. 4.6 Entropy
      8. 4.7 Entropy on a Microscopic Scale
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  3. Electricity and Magnetism
    1. 5 Electric Charges and Fields
      1. Introduction
      2. 5.1 Electric Charge
      3. 5.2 Conductors, Insulators, and Charging by Induction
      4. 5.3 Coulomb's Law
      5. 5.4 Electric Field
      6. 5.5 Calculating Electric Fields of Charge Distributions
      7. 5.6 Electric Field Lines
      8. 5.7 Electric Dipoles
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    2. 6 Gauss's Law
      1. Introduction
      2. 6.1 Electric Flux
      3. 6.2 Explaining Gauss’s Law
      4. 6.3 Applying Gauss’s Law
      5. 6.4 Conductors in Electrostatic Equilibrium
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    3. 7 Electric Potential
      1. Introduction
      2. 7.1 Electric Potential Energy
      3. 7.2 Electric Potential and Potential Difference
      4. 7.3 Calculations of Electric Potential
      5. 7.4 Determining Field from Potential
      6. 7.5 Equipotential Surfaces and Conductors
      7. 7.6 Applications of Electrostatics
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 8 Capacitance
      1. Introduction
      2. 8.1 Capacitors and Capacitance
      3. 8.2 Capacitors in Series and in Parallel
      4. 8.3 Energy Stored in a Capacitor
      5. 8.4 Capacitor with a Dielectric
      6. 8.5 Molecular Model of a Dielectric
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    5. 9 Current and Resistance
      1. Introduction
      2. 9.1 Electrical Current
      3. 9.2 Model of Conduction in Metals
      4. 9.3 Resistivity and Resistance
      5. 9.4 Ohm's Law
      6. 9.5 Electrical Energy and Power
      7. 9.6 Superconductors
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    6. 10 Direct-Current Circuits
      1. Introduction
      2. 10.1 Electromotive Force
      3. 10.2 Resistors in Series and Parallel
      4. 10.3 Kirchhoff's Rules
      5. 10.4 Electrical Measuring Instruments
      6. 10.5 RC Circuits
      7. 10.6 Household Wiring and Electrical Safety
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    7. 11 Magnetic Forces and Fields
      1. Introduction
      2. 11.1 Magnetism and Its Historical Discoveries
      3. 11.2 Magnetic Fields and Lines
      4. 11.3 Motion of a Charged Particle in a Magnetic Field
      5. 11.4 Magnetic Force on a Current-Carrying Conductor
      6. 11.5 Force and Torque on a Current Loop
      7. 11.6 The Hall Effect
      8. 11.7 Applications of Magnetic Forces and Fields
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    8. 12 Sources of Magnetic Fields
      1. Introduction
      2. 12.1 The Biot-Savart Law
      3. 12.2 Magnetic Field Due to a Thin Straight Wire
      4. 12.3 Magnetic Force between Two Parallel Currents
      5. 12.4 Magnetic Field of a Current Loop
      6. 12.5 Ampère’s Law
      7. 12.6 Solenoids and Toroids
      8. 12.7 Magnetism in Matter
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    9. 13 Electromagnetic Induction
      1. Introduction
      2. 13.1 Faraday’s Law
      3. 13.2 Lenz's Law
      4. 13.3 Motional Emf
      5. 13.4 Induced Electric Fields
      6. 13.5 Eddy Currents
      7. 13.6 Electric Generators and Back Emf
      8. 13.7 Applications of Electromagnetic Induction
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    10. 14 Inductance
      1. Introduction
      2. 14.1 Mutual Inductance
      3. 14.2 Self-Inductance and Inductors
      4. 14.3 Energy in a Magnetic Field
      5. 14.4 RL Circuits
      6. 14.5 Oscillations in an LC Circuit
      7. 14.6 RLC Series Circuits
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    11. 15 Alternating-Current Circuits
      1. Introduction
      2. 15.1 AC Sources
      3. 15.2 Simple AC Circuits
      4. 15.3 RLC Series Circuits with AC
      5. 15.4 Power in an AC Circuit
      6. 15.5 Resonance in an AC Circuit
      7. 15.6 Transformers
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    12. 16 Electromagnetic Waves
      1. Introduction
      2. 16.1 Maxwell’s Equations and Electromagnetic Waves
      3. 16.2 Plane Electromagnetic Waves
      4. 16.3 Energy Carried by Electromagnetic Waves
      5. 16.4 Momentum and Radiation Pressure
      6. 16.5 The Electromagnetic Spectrum
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  4. A | Units
  5. B | Conversion Factors
  6. C | Fundamental Constants
  7. D | Astronomical Data
  8. E | Mathematical Formulas
  9. F | Chemistry
  10. G | The Greek Alphabet
  11. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
  12. Index

Conceptual Questions

9.1 Electrical Current

1.

Can a wire carry a current and still be neutral—that is, have a total charge of zero? Explain.

2.

Car batteries are rated in ampere-hours (A·h)(A·h). To what physical quantity do ampere-hours correspond (voltage, current, charge, energy, power,…)?

3.

When working with high-power electric circuits, it is advised that whenever possible, you work “one-handed” or “keep one hand in your pocket.” Why is this a sensible suggestion?

9.2 Model of Conduction in Metals

4.

Incandescent light bulbs are being replaced with more efficient LED and CFL light bulbs. Is there any obvious evidence that incandescent light bulbs might not be that energy efficient? Is energy converted into anything but visible light?

5.

It was stated that the motion of an electron appears nearly random when an electrical field is applied to the conductor. What makes the motion nearly random and differentiates it from the random motion of molecules in a gas?

6.

Electric circuits are sometimes explained using a conceptual model of water flowing through a pipe. In this conceptual model, the voltage source is represented as a pump that pumps water through pipes and the pipes connect components in the circuit. Is a conceptual model of water flowing through a pipe an adequate representation of the circuit? How are electrons and wires similar to water molecules and pipes? How are they different?

7.

An incandescent light bulb is partially evacuated. Why do you suppose that is?

9.3 Resistivity and Resistance

8.

The IR drop across a resistor means that there is a change in potential or voltage across the resistor. Is there any change in current as it passes through a resistor? Explain.

9.

Do impurities in semiconducting materials listed in Table 9.1 supply free charges? (Hint: Examine the range of resistivity for each and determine whether the pure semiconductor has the higher or lower conductivity.)

10.

Does the resistance of an object depend on the path current takes through it? Consider, for example, a rectangular bar—is its resistance the same along its length as across its width?

Pictures are a schematic drawing of a resistance object with the long side of the length R and the short side of the length R prime. In the left picture, current flows along the long side; in the right picture, current flows along the short side.
11.

If aluminum and copper wires of the same length have the same resistance, which has the larger diameter? Why?

9.4 Ohm's Law

12.

In Determining Field from Potential, resistance was defined as RVIRVI. In this section, we presented Ohm’s law, which is commonly expressed as V=IRV=IR. The equations look exactly alike. What is the difference between Ohm’s law and the definition of resistance?

13.

Shown below are the results of an experiment where four devices were connected across a variable voltage source. The voltage is increased and the current is measured. Which device, if any, is an ohmic device?

Figure is a plot of current versus voltage. For A, current originally increases with voltage, then saturates and remains the same. For B, current linearly increases with voltage. For C current increases with voltage at a growing late. For D current decreases with voltage approaching zero.
14.

The current I is measured through a sample of an ohmic material as a voltage V is applied. (a) What is the current when the voltage is doubled to 2V (assume the change in temperature of the material is negligible)? (b) What is the voltage applied is the current measured is 0.2I (assume the change in temperature of the material is negligible)? What will happen to the current if the material if the voltage remains constant, but the temperature of the material increases significantly?

9.5 Electrical Energy and Power

15.

Common household appliances are rated at 110 V, but power companies deliver voltage in the kilovolt range and then step the voltage down using transformers to 110 V to be used in homes. You will learn in later chapters that transformers consist of many turns of wire, which warm up as current flows through them, wasting some of the energy that is given off as heat. This sounds inefficient. Why do the power companies transport electric power using this method?

16.

Your electric bill gives your consumption in units of kilowatt-hour (kW ·· h). Does this unit represent the amount of charge, current, voltage, power, or energy you buy?

17.

Resistors are commonly rated at 18W18W, 14W14W, 12W12W, 1 W and 2 W for use in electrical circuits. If a current of I=2.00AI=2.00A is accidentally passed through a R=1.00ΩR=1.00Ω resistor rated at 1 W, what would be the most probable outcome? Is there anything that can be done to prevent such an accident?

18.

An immersion heater is a small appliance used to heat a cup of water for tea by passing current through a resistor. If the voltage applied to the appliance is doubled, will the time required to heat the water change? By how much? Is this a good idea?

9.6 Superconductors

19.

What requirement for superconductivity makes current superconducting devices expensive to operate?

20.

Name two applications for superconductivity listed in this section and explain how superconductivity is used in the application. Can you think of a use for superconductivity that is not listed?

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
Citation information

© Jul 21, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.