Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Menu
Table of contents
  1. Preface
  2. Mechanics
    1. 1 Units and Measurement
      1. Introduction
      2. 1.1 The Scope and Scale of Physics
      3. 1.2 Units and Standards
      4. 1.3 Unit Conversion
      5. 1.4 Dimensional Analysis
      6. 1.5 Estimates and Fermi Calculations
      7. 1.6 Significant Figures
      8. 1.7 Solving Problems in Physics
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    2. 2 Vectors
      1. Introduction
      2. 2.1 Scalars and Vectors
      3. 2.2 Coordinate Systems and Components of a Vector
      4. 2.3 Algebra of Vectors
      5. 2.4 Products of Vectors
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    3. 3 Motion Along a Straight Line
      1. Introduction
      2. 3.1 Position, Displacement, and Average Velocity
      3. 3.2 Instantaneous Velocity and Speed
      4. 3.3 Average and Instantaneous Acceleration
      5. 3.4 Motion with Constant Acceleration
      6. 3.5 Free Fall
      7. 3.6 Finding Velocity and Displacement from Acceleration
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 4 Motion in Two and Three Dimensions
      1. Introduction
      2. 4.1 Displacement and Velocity Vectors
      3. 4.2 Acceleration Vector
      4. 4.3 Projectile Motion
      5. 4.4 Uniform Circular Motion
      6. 4.5 Relative Motion in One and Two Dimensions
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    5. 5 Newton's Laws of Motion
      1. Introduction
      2. 5.1 Forces
      3. 5.2 Newton's First Law
      4. 5.3 Newton's Second Law
      5. 5.4 Mass and Weight
      6. 5.5 Newton’s Third Law
      7. 5.6 Common Forces
      8. 5.7 Drawing Free-Body Diagrams
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    6. 6 Applications of Newton's Laws
      1. Introduction
      2. 6.1 Solving Problems with Newton’s Laws
      3. 6.2 Friction
      4. 6.3 Centripetal Force
      5. 6.4 Drag Force and Terminal Speed
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    7. 7 Work and Kinetic Energy
      1. Introduction
      2. 7.1 Work
      3. 7.2 Kinetic Energy
      4. 7.3 Work-Energy Theorem
      5. 7.4 Power
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    8. 8 Potential Energy and Conservation of Energy
      1. Introduction
      2. 8.1 Potential Energy of a System
      3. 8.2 Conservative and Non-Conservative Forces
      4. 8.3 Conservation of Energy
      5. 8.4 Potential Energy Diagrams and Stability
      6. 8.5 Sources of Energy
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    9. 9 Linear Momentum and Collisions
      1. Introduction
      2. 9.1 Linear Momentum
      3. 9.2 Impulse and Collisions
      4. 9.3 Conservation of Linear Momentum
      5. 9.4 Types of Collisions
      6. 9.5 Collisions in Multiple Dimensions
      7. 9.6 Center of Mass
      8. 9.7 Rocket Propulsion
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    10. 10 Fixed-Axis Rotation
      1. Introduction
      2. 10.1 Rotational Variables
      3. 10.2 Rotation with Constant Angular Acceleration
      4. 10.3 Relating Angular and Translational Quantities
      5. 10.4 Moment of Inertia and Rotational Kinetic Energy
      6. 10.5 Calculating Moments of Inertia
      7. 10.6 Torque
      8. 10.7 Newton’s Second Law for Rotation
      9. 10.8 Work and Power for Rotational Motion
      10. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    11. 11 Angular Momentum
      1. Introduction
      2. 11.1 Rolling Motion
      3. 11.2 Angular Momentum
      4. 11.3 Conservation of Angular Momentum
      5. 11.4 Precession of a Gyroscope
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    12. 12 Static Equilibrium and Elasticity
      1. Introduction
      2. 12.1 Conditions for Static Equilibrium
      3. 12.2 Examples of Static Equilibrium
      4. 12.3 Stress, Strain, and Elastic Modulus
      5. 12.4 Elasticity and Plasticity
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    13. 13 Gravitation
      1. Introduction
      2. 13.1 Newton's Law of Universal Gravitation
      3. 13.2 Gravitation Near Earth's Surface
      4. 13.3 Gravitational Potential Energy and Total Energy
      5. 13.4 Satellite Orbits and Energy
      6. 13.5 Kepler's Laws of Planetary Motion
      7. 13.6 Tidal Forces
      8. 13.7 Einstein's Theory of Gravity
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    14. 14 Fluid Mechanics
      1. Introduction
      2. 14.1 Fluids, Density, and Pressure
      3. 14.2 Measuring Pressure
      4. 14.3 Pascal's Principle and Hydraulics
      5. 14.4 Archimedes’ Principle and Buoyancy
      6. 14.5 Fluid Dynamics
      7. 14.6 Bernoulli’s Equation
      8. 14.7 Viscosity and Turbulence
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  3. Waves and Acoustics
    1. 15 Oscillations
      1. Introduction
      2. 15.1 Simple Harmonic Motion
      3. 15.2 Energy in Simple Harmonic Motion
      4. 15.3 Comparing Simple Harmonic Motion and Circular Motion
      5. 15.4 Pendulums
      6. 15.5 Damped Oscillations
      7. 15.6 Forced Oscillations
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    2. 16 Waves
      1. Introduction
      2. 16.1 Traveling Waves
      3. 16.2 Mathematics of Waves
      4. 16.3 Wave Speed on a Stretched String
      5. 16.4 Energy and Power of a Wave
      6. 16.5 Interference of Waves
      7. 16.6 Standing Waves and Resonance
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    3. 17 Sound
      1. Introduction
      2. 17.1 Sound Waves
      3. 17.2 Speed of Sound
      4. 17.3 Sound Intensity
      5. 17.4 Normal Modes of a Standing Sound Wave
      6. 17.5 Sources of Musical Sound
      7. 17.6 Beats
      8. 17.7 The Doppler Effect
      9. 17.8 Shock Waves
      10. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  4. A | Units
  5. B | Conversion Factors
  6. C | Fundamental Constants
  7. D | Astronomical Data
  8. E | Mathematical Formulas
  9. F | Chemistry
  10. G | The Greek Alphabet
  11. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
  12. Index

Check Your Understanding

8.1

( 4.63 J ) ( −2.38 J ) = 7.00 J ( 4.63 J ) ( −2.38 J ) = 7.00 J

8.2

35.3 kJ, 143 kJ, 0

8.3

22.8 cm. Using 0.02 m for the initial displacement of the spring (see above), we calculate the final displacement of the spring to be 0.028 m; therefore the length of the spring is the unstretched length plus the displacement, or 22.8 cm.

8.4

It increases because you had to exert a downward force, doing positive work, to pull the mass down, and that’s equal to the change in the total potential energy.

8.5

2.83 N

8.6

F=4.8NF=4.8N, directed toward the origin

8.7

0.10 m 0.10 m

8.8

b. At any given height, the gravitational potential energy is the same going up or down, but the kinetic energy is less going down than going up, since air resistance is dissipative and does negative work. Therefore, at any height, the speed going down is less than the speed going up, so it must take a longer time to go down than to go up.

8.9

constant U(x)=−1JU(x)=−1J

8.10

a. yes, motion confined to −1.055mx1.055m−1.055mx1.055m; b. same equilibrium points and types as in example

8.11

x ( t ) = ± ( 2 E / k ) sin [ ( k / m ) t ] and v 0 = ± ( 2 E / m ) x ( t ) = ± ( 2 E / k ) sin [ ( k / m ) t ] and v 0 = ± ( 2 E / m )

Conceptual Questions

1.

The potential energy of a system can be negative because its value is relative to a defined point.

3.

If the reference point of the ground is zero gravitational potential energy, the javelin first increases its gravitational potential energy, followed by a decrease in its gravitational potential energy as it is thrown until it hits the ground. The overall change in gravitational potential energy of the javelin is zero unless the center of mass of the javelin is lower than from where it is initially thrown, and therefore would have slightly less gravitational potential energy.

5.

the vertical height from the ground to the object

7.

A force that takes energy away from the system that can’t be recovered if we were to reverse the action.

9.

The change in kinetic energy is the net work. Since conservative forces are path independent, when you are back to the same point the kinetic and potential energies are exactly the same as the beginning. During the trip the total energy is conserved, but both the potential and kinetic energy change.

11.

The car experiences a change in gravitational potential energy as it goes down the hills because the vertical distance is decreasing. Some of this change of gravitational potential energy will be taken away by work done by friction. The rest of the energy results in a kinetic energy increase, making the car go faster. Lastly, the car brakes and will lose its kinetic energy to the work done by braking to a stop.

13.

It states that total energy of the system E is conserved as long as there are no non-conservative forces acting on the object.

15.

He puts energy into the system through his legs compressing and expanding.

17.

Four times the original height would double the impact speed.

Problems

19.

40,000

21.

a. −200 J ; b. −200 J ; c. −100 J ; d. −300 J a. −200 J ; b. −200 J ; c. −100 J ; d. −300 J

23.

a. 0.068 J ; b. −0.068 J ; c. 0.068 J ; d. 0.068 J ; e. −0.068 J ; f. 46 cm a. 0.068 J ; b. −0.068 J ; c. 0.068 J ; d. 0.068 J ; e. −0.068 J ; f. 46 cm

25.

−120 J −120 J

27.

a. (2ab)1/6(2ab)1/6; b. 00; c. x6x6

29.

14 m / s 14 m / s

31.

14 J 14 J

33.

proof

35.

9.7 m / s 9.7 m / s

37.

39 m / s 39 m / s

39.

1900 J

41.

–39 J

43.

3.5 cm

45.

10x with x-axis pointed away from the wall and origin at the wall

47.

4.6 m/s

49.

a. 5.6 m/s; b. 5.2 m/s; c. 6.4 m/s; d. no; e. yes

51.

a.

The potential energy function U of x equal to k x squared over two plus A e to the alpha x squared is plotted as a function of x, with k=0.02, A=1, and alpha equal to one. The horizontal scale runs from –25 to 25 and the vertical scale runs from 0 to 4.5. The function is an upward opening parabola with a small Gaussian upward bump at the center. For the parameters chosen in this plot, the bump has a maximum value of one.


where k=0.02,A=1,α=1k=0.02,A=1,α=1; b. F=kxαxAeαx2F=kxαxAeαx2; c. The potential energy at x=0x=0 must be less than the kinetic plus potential energy at x=ax=a or A12mv2+12ka2+Aeαa2.A12mv2+12ka2+Aeαa2. Solving this for A matches results in the problem.

53.

8700 N/m

55.

a. 70.6 m/s; b. 69.9 m/s

57.

a. 180 N/m; b. 11 m

59.

a. 9.8×103J9.8×103J; b. 1.4×103J1.4×103J; c. 14 m/s

61.

a. 47.6 m; b. 1.88×105J1.88×105J; c. 373 N

63.

33.9 cm

65.

a. Zero, since the total energy of the system is zero and the kinetic energy at the lowest point is zero; b. –0.038 J; c. 0.62 m/s

67.

42 cm

Additional Problems

69.

–0.44 J

71.

3.6 m/s

73.

b D 4 / 4 b D 4 / 4

75.

proof

77.

a. 2m2ghk(m+M)2m2ghk(m+M); b. mMghm+MmMghm+M

79.

a. 2.24 m / s ; b. 1.94 m / s ; c. 1.94 m / s a. 2.24 m / s ; b. 1.94 m / s ; c. 1.94 m / s

81.

18 m/s

83.

v A = 24 m/s; v B = 14 m/s; v C = 31 m/s v A = 24 m/s; v B = 14 m/s; v C = 31 m/s

85.

a. Loss of energy is 240N·m240N·m; b. F=8NF=8N

87.

89.7 m/s

89.

32 J

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
Citation information

© Apr 5, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.