Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Summary

4.1 Displacement and Velocity Vectors

  • The position function r(t)r(t) gives the position as a function of time of a particle moving in two or three dimensions. Graphically, it is a vector from the origin of a chosen coordinate system to the point where the particle is located at a specific time.
  • The displacement vector ΔrΔr gives the shortest distance between any two points on the trajectory of a particle in two or three dimensions.
  • Instantaneous velocity gives the speed and direction of a particle at a specific time on its trajectory in two or three dimensions, and is a vector in two and three dimensions.
  • The velocity vector is tangent to the trajectory of the particle.
  • Displacement r(t)r(t) can be written as a vector sum of the one-dimensional displacements x(t),y(t),z(t)x(t),y(t),z(t) along the x, y, and z directions.
  • Velocity v(t)v(t) can be written as a vector sum of the one-dimensional velocities vx(t),vy(t),vz(t)vx(t),vy(t),vz(t) along the x, y, and z directions.
  • Motion in any given direction is independent of motion in a perpendicular direction.

4.2 Acceleration Vector

  • In two and three dimensions, the acceleration vector can have an arbitrary direction and does not necessarily point along a given component of the velocity.
  • The instantaneous acceleration is produced by a change in velocity taken over a very short (infinitesimal) time period. Instantaneous acceleration is a vector in two or three dimensions. It is found by taking the derivative of the velocity function with respect to time.
  • In three dimensions, acceleration a(t)a(t) can be written as a vector sum of the one-dimensional accelerations ax(t),ay(t),andaz(t)ax(t),ay(t),andaz(t) along the x-, y-, and z-axes.
  • The kinematic equations for constant acceleration can be written as the vector sum of the constant acceleration equations in the x, y, and z directions.

4.3 Projectile Motion

  • Projectile motion is the motion of an object subject only to the acceleration of gravity, where the acceleration is constant, as near the surface of Earth.
  • To solve projectile motion problems, we analyze the motion of the projectile in the horizontal and vertical directions using the one-dimensional kinematic equations for x and y.
  • The time of flight of a projectile launched with initial vertical velocity v0yv0y on an even surface is given by
    Ttof=2(v0sinθ)g.Ttof=2(v0sinθ)g.
    This equation is valid only when the projectile lands at the same elevation from which it was launched.
  • The maximum horizontal distance traveled by a projectile is called the range. Again, the equation for range is valid only when the projectile lands at the same elevation from which it was launched.

4.4 Uniform and Nonuniform Circular Motion

  • Uniform circular motion is motion in a circle at constant speed.
  • Centripetal acceleration aCaC is the acceleration a particle must have to follow a circular path. Centripetal acceleration always points toward the center of rotation and has magnitude aC=v2/r.aC=v2/r.
  • Nonuniform circular motion occurs when there is tangential acceleration of an object executing circular motion such that the speed of the object is changing. This acceleration is called tangential acceleration aT.aT. The magnitude of tangential acceleration is the time rate of change of the magnitude of the velocity. The tangential acceleration vector is tangential to the circle, whereas the centripetal acceleration vector points radially inward toward the center of the circle. The total acceleration is the vector sum of tangential and centripetal accelerations.
  • An object executing uniform circular motion can be described with equations of motion. The position vector of the object is r(t)=Acosωti^+Asinωtj^,r(t)=Acosωti^+Asinωtj^, where A is the magnitude |r(t)|,|r(t)|, which is also the radius of the circle, and ωω is the angular frequency.

4.5 Relative Motion in One and Two Dimensions

  • When analyzing motion of an object, the reference frame in terms of position, velocity, and acceleration needs to be specified.
  • Relative velocity is the velocity of an object as observed from a particular reference frame, and it varies with the choice of reference frame.
  • If S and SS are two reference frames moving relative to each other at a constant velocity, then the velocity of an object relative to S is equal to its velocity relative to SS plus the velocity of SS relative to S.
  • If two reference frames are moving relative to each other at a constant velocity, then the accelerations of an object as observed in both reference frames are equal.
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
Citation information

© Jul 23, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.