Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax

Menú
Índice
  1. Prefacio
  2. 1 Ideas esenciales
    1. Introducción
    2. 1.1 La química en su contexto
    3. 1.2 Fases y clasificación de la materia
    4. 1.3 Propiedades físicas y químicas
    5. 1.4 Mediciones
    6. 1.5 Incertidumbre, exactitud y precisión de las mediciones
    7. 1.6 Tratamiento matemático de los resultados de las mediciones
    8. Términos clave
    9. Ecuaciones clave
    10. Resumen
    11. Ejercicios
  3. 2 Átomos, moléculas e iones
    1. Introducción
    2. 2.1 Las primeras ideas de la teoría atómica
    3. 2.2 Evolución de la teoría atómica
    4. 2.3 Estructura atómica y simbolismo
    5. 2.4 Fórmulas químicas
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  4. 3 Estructura electrónica y propiedades periódicas de los elementos
    1. Introducción
    2. 3.1 Energía electromagnética
    3. 3.2 El modelo de Bohr
    4. 3.3 Desarrollo de la teoría cuántica
    5. 3.4 Estructura electrónica de los átomos (configuraciones de electrones)
    6. 3.5 Variaciones periódicas de las propiedades de los elementos
    7. 3.6 La tabla periódica
    8. 3.7 Compuestos iónicos y moleculares
    9. Términos clave
    10. Ecuaciones clave
    11. Resumen
    12. Ejercicios
  5. 4 Enlace químico y geometría molecular
    1. Introducción
    2. 4.1 Enlace iónico
    3. 4.2 Enlace covalente
    4. 4.3 Nomenclatura química
    5. 4.4 Símbolos y estructuras de Lewis
    6. 4.5 Cargas formales y resonancia
    7. 4.6 Estructura molecular y polaridad
    8. Términos clave
    9. Ecuaciones clave
    10. Resumen
    11. Ejercicios
  6. 5 Teorías avanzadas de enlace
    1. Introducción
    2. 5.1 Teoría de enlace de valencia
    3. 5.2 Orbitales atómicos híbridos
    4. 5.3 Enlaces múltiples
    5. 5.4 Teoría de los orbitales moleculares
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  7. 6 Composición de sustancias y soluciones
    1. Introducción
    2. 6.1 Fórmula de masa
    3. 6.2 Determinación de fórmulas empíricas y moleculares
    4. 6.3 Molaridad
    5. 6.4 Otras unidades para las concentraciones de las soluciones
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  8. 7 Estequiometría de las reacciones químicas
    1. Introducción
    2. 7.1 Escritura y balance de ecuaciones químicas
    3. 7.2 Clasificación de las reacciones químicas
    4. 7.3 Estequiometría de la reacción
    5. 7.4 Rendimiento de la reacción
    6. 7.5 Análisis químico cuantitativo
    7. Términos clave
    8. Ecuaciones clave
    9. Resumen
    10. Ejercicios
  9. 8 Gases
    1. Introducción
    2. 8.1 Presión del gas
    3. 8.2 Relaciones entre presión, volumen, cantidad y temperatura: la ley de los gases ideales
    4. 8.3 Estequiometría de sustancias gaseosas, mezclas y reacciones
    5. 8.4 Efusión y difusión de los gases
    6. 8.5 La teoría cinético-molecular
    7. 8.6 Comportamiento no ideal de los gases
    8. Términos clave
    9. Ecuaciones clave
    10. Resumen
    11. Ejercicios
  10. 9 Termoquímica
    1. Introducción
    2. 9.1 Conceptos básicos de energía
    3. 9.2 Calorimetría
    4. 9.3 Entalpía
    5. 9.4 Fuerza de los enlaces iónicos y covalentes
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  11. 10 Líquidos y sólidos
    1. Introducción
    2. 10.1 Fuerzas intermoleculares
    3. 10.2 Propiedades de los líquidos
    4. 10.3 Transiciones de fase
    5. 10.4 Diagramas de fase
    6. 10.5 El estado sólido de la materia
    7. 10.6 Estructuras de red en los sólidos cristalinos
    8. Términos clave
    9. Ecuaciones clave
    10. Resumen
    11. Ejercicios
  12. 11 Soluciones y coloides
    1. Introducción
    2. 11.1 El proceso de disolución
    3. 11.2 Electrolitos
    4. 11.3 Solubilidad
    5. 11.4 Propiedades coligativas
    6. 11.5 Coloides
    7. Términos clave
    8. Ecuaciones clave
    9. Resumen
    10. Ejercicios
  13. 12 Termodinámica
    1. Introducción
    2. 12.1 Espontaneidad
    3. 12.2 Entropía
    4. 12.3 La segunda y la tercera ley de la termodinámica
    5. 12.4 Energía libre
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  14. 13 Conceptos fundamentales del equilibrio
    1. Introducción
    2. 13.1 Equilibrio químico
    3. 13.2 Constantes de equilibrio
    4. 13.3 Equilibrios cambiantes: el principio de Le Châtelier
    5. 13.4 Cálculos de equilibrio
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  15. 14 Equilibrios ácido-base
    1. Introducción
    2. 14.1 Ácidos y Bases de Brønsted-Lowry
    3. 14.2 pH y pOH
    4. 14.3 Fuerza relativa de los ácidos y las bases
    5. 14.4 Hidrólisis de sales
    6. 14.5 Ácidos polipróticos
    7. 14.6 Tampones
    8. 14.7 Titulaciones ácido-base
    9. Términos clave
    10. Ecuaciones clave
    11. Resumen
    12. Ejercicios
  16. 15 Equilibrios de otras clases de reacción
    1. Introducción
    2. 15.1 Precipitación y disolución
    3. 15.2 Ácidos y Bases de Lewis
    4. 15.3 Equilibrios acoplados
    5. Términos clave
    6. Ecuaciones clave
    7. Resumen
    8. Ejercicios
  17. 16 Electroquímica
    1. Introducción
    2. 16.1 Repaso de química redox
    3. 16.2 Celdas galvánicas
    4. 16.3 Potenciales del electrodo y de la celda
    5. 16.4 Potencial, energía libre y equilibrio
    6. 16.5 Baterías y pilas de combustible
    7. 16.6 Corrosión
    8. 16.7 Electrólisis
    9. Términos clave
    10. Ecuaciones clave
    11. Resumen
    12. Ejercicios
  18. 17 Cinética
    1. Introducción
    2. 17.1 Tasas de reacciones químicas
    3. 17.2 Factores que afectan las tasas de reacción
    4. 17.3 Leyes de velocidad
    5. 17.4 Leyes de tasas integradas
    6. 17.5 Teoría de colisiones
    7. 17.6 Mecanismos de reacción
    8. 17.7 Catálisis
    9. Términos clave
    10. Ecuaciones clave
    11. Resumen
    12. Ejercicios
  19. 18 Metales representativos, metaloides y no metales
    1. Introducción
    2. 18.1 Periodicidad
    3. 18.2 Incidencia y preparación de los metales representativos
    4. 18.3 Estructura y propiedades generales de los metaloides
    5. 18.4 Estructura y propiedades generales de los no metales
    6. 18.5 Incidencia, preparación y compuestos de hidrógeno
    7. 18.6 Incidencia, preparación y propiedades de los carbonatos
    8. 18.7 Incidencia, preparación y propiedades del nitrógeno
    9. 18.8 Incidencia, preparación y propiedades del fósforo
    10. 18.9 Incidencia, preparación y compuestos del oxígeno
    11. 18.10 Incidencia, preparación y propiedades del azufre
    12. 18.11 Incidencia, preparación y propiedades de los halógenos
    13. 18.12 Incidencia, preparación y propiedades de los gases nobles
    14. Términos clave
    15. Resumen
    16. Ejercicios
  20. 19 Metales de transición y química de coordinación
    1. Introducción
    2. 19.1 Incidencia, preparación y propiedades de los metales de transición y sus compuestos
    3. 19.2 Química de coordinación de los metales de transición
    4. 19.3 Propiedades espectroscópicas y magnéticas de los compuestos de coordinación
    5. Términos clave
    6. Resumen
    7. Ejercicios
  21. 20 Química nuclear
    1. Introducción
    2. 20.1 Estructura y estabilidad nuclear
    3. 20.2 Ecuaciones nucleares
    4. 20.3 Decaimiento radiactivo
    5. 20.4 Transmutación y energía nuclear
    6. 20.5 Usos de los radioisótopos
    7. 20.6 Efectos biológicos de la radiación
    8. Términos clave
    9. Ecuaciones clave
    10. Resumen
    11. Ejercicios
  22. 21 Química orgánica
    1. Introducción
    2. 21.1 Hidrocarburos
    3. 21.2 Alcoholes y éteres
    4. 21.3 Aldehídos, cetonas, ácidos carboxílicos y ésteres
    5. 21.4 Aminas y amidas
    6. Términos clave
    7. Resumen
    8. Ejercicios
  23. A La tabla periódica
  24. B Matemáticas esenciales
  25. C Unidades y factores de conversión
  26. D Constantes físicas fundamentales
  27. E Propiedades del agua
  28. F Composición de los ácidos y las bases comerciales
  29. G Propiedades termodinámicas estándar de determinadas sustancias
  30. H Constantes de ionización de los ácidos débiles
  31. I Constantes de ionización de las bases débiles
  32. J Productos de solubilidad
  33. K Constantes de formación de iones complejos
  34. L Potenciales de electrodos estándar (media celda)
  35. M Semivida de varios isótopos radiactivos
  36. Clave de respuestas
    1. Capítulo 1
    2. Capítulo 2
    3. Capítulo 3
    4. Capítulo 4
    5. Capítulo 5
    6. Capítulo 6
    7. Capítulo 7
    8. Capítulo 8
    9. Capítulo 9
    10. Capítulo 10
    11. Capítulo 11
    12. Capítulo 12
    13. Capítulo 13
    14. Capítulo 14
    15. Capítulo 15
    16. Capítulo 16
    17. Capítulo 17
    18. Capítulo 18
    19. Capítulo 19
    20. Capítulo 20
    21. Capítulo 21
  37. Índice

Objetivos de aprendizaje

Al final de esta sección, podrá:

  • Describir el enlace covalente múltiple en términos de superposición de orbitales atómicos.
  • Relacionar el concepto de resonancia con el enlace π y la deslocalización de electrones.

El modelo de orbitales híbridos parece explicar la geometría de las moléculas con enlaces covalentes simples. ¿Es capaz también de describir moléculas que contienen dobles y triples enlaces? Ya comentamos que los enlaces múltiples están formados por enlaces σ y π. A continuación consideraremos cómo visualizar estos componentes y cómo se relacionan con los orbitales híbridos. La estructura de Lewis del eteno, C2H4, nos muestra que cada átomo de carbono está rodeado por otro átomo de carbono y dos átomos de hidrógeno.

Se muestra una estructura de Lewis en la que dos átomos de carbono están unidos por un doble enlace. Cada átomo de carbono está unido a dos átomos de hidrógeno por un enlace simple.

Las tres regiones de enlace forman una geometría trigonal plana de pares de electrones. Así, esperamos que los enlaces σ de cada átomo de carbono se formen utilizando un conjunto de orbitales híbridos sp2 que resultan de la hibridación de dos de los orbitales 2p y el orbital 2s (Figura 5.22). Estos orbitales forman los enlaces simples C-H y el enlace σ en el C=CC=C doble enlace (Figura 5.23). El enlace π en el doble enlace C=CC=C resulta de la superposición del tercer orbital 2p (restante) en cada átomo de carbono que no participa en la hibridación. Este orbital p no hibridado (lóbulos en rojo y azul en la Figura 5.23) es perpendicular al plano de los orbitales híbridos sp2. Así, los orbitales 2p no hibridados se superponen de forma lateral, por encima y por debajo del eje internuclear (Figura 5.23) y forman un enlace π.

Se muestra un diagrama en dos partes, conectadas por una flecha hacia la derecha marcada como "Hibridación". El diagrama de la izquierda muestra una flecha hacia arriba marcada como "E". En la parte inferior derecha de la flecha hay una línea corta y horizontal marcada como "2 s", que tiene dos medias flechas verticales orientadas hacia arriba y hacia abajo. En la parte superior derecha de la flecha hay una serie de tres líneas horizontales cortas marcadas como "2 p". Sobre ambos conjuntos de líneas aparece la frase "Orbitales en un átomo de C aislado". Dos de las líneas tienen dibujadas flechas verticales hacia arriba. El lado derecho del diagrama muestra tres líneas cortas y horizontales colocadas a mitad del espacio y cada una marcada como "s p superíndice 2". En cada línea se dibuja verticalmente una media flecha hacia arriba. Encima de estas líneas hay otra línea corta y horizontal, marcada como "p". Encima de ambos conjuntos de líneas aparece la frase: "Orbitales en el átomo de C hibridado s p superíndice 2 en C subíndice 2 H subíndice 4".
Figura 5.22 En el eteno, cada átomo de carbono está hibridado sp2, y los orbitales sp2 y el orbital p están ocupados individualmente. Los orbitales híbridos se superponen para formar enlaces σ, mientras que los orbitales p de cada átomo de carbono se superponen para formar un enlace π.
Se muestran dos diagramas marcados como "a" y "b". El diagrama a muestra dos átomos de carbono con tres orbitales púrpura en forma de globo dispuestos en un plano alrededor de ellos y dos orbitales rojos en forma de globo dispuestos vertical y perpendicularmente al plano. Hay una superposición de dos de los orbitales púrpura entre los dos átomos de carbono, y los otros cuatro orbitales púrpura que miran hacia el exterior de la molécula se muestran interactuando con orbitales azules esféricos de cuatro átomos de hidrógeno. El diagrama b representa una imagen similar al diagrama a, pero los orbitales rojos y verticales están interactuando por encima y por debajo del plano de la molécula para formar dos áreas marcadas como "Un enlace pi".
Figura 5.23 En la molécula de eteno, C2H4, hay (a) cinco enlaces σ. Un enlace C-C σ resulta de la superposición de orbitales híbridos sp2 en el átomo de carbono con un orbital híbrido sp2 en el otro átomo de carbono. Cuatro enlaces C-H resultan de la superposición entre los orbitales sp2 de los átomos de C con los orbitales s de los átomos de hidrógeno. (b) El enlace π se forma por la superposición lado a lado de los dos orbitales p no hibridados en los dos átomos de carbono. Los dos lóbulos del enlace π están por encima y por debajo del plano del sistema σ.

En una molécula de eteno, los cuatro átomos de hidrógeno y los dos átomos de carbono están todos en el mismo plano. Si los dos planos de los orbitales híbridos sp2 estuvieran inclinados uno respecto al otro, los orbitales p no estarían orientados para superponerse eficazmente y crear el enlace π. La configuración planar de la molécula de eteno se produce porque es la disposición de enlace más estable. Esta es una diferencia significativa entre los enlaces σ y π; la rotación alrededor de los enlaces simples (σ) se produce fácilmente porque la superposición orbital de extremo a extremo no depende de la orientación relativa de los orbitales de cada átomo del enlace. En otras palabras, la rotación alrededor del eje internuclear no cambia el grado de superposición de los orbitales de enlace σ porque la densidad de electrones de enlace es simétrica respecto al eje. La rotación alrededor del eje internuclear es mucho más difícil para los enlaces múltiples; sin embargo, esto alteraría drásticamente la superposición fuera del eje de los orbitales de enlace π, rompiendo esencialmente el enlace π.

En las moléculas con orbitales híbridos sp, quedan dos orbitales p no hibridados en el átomo (Figura 5.24). Esta situación la encontramos en el acetileno, H-C≡C-H,H-C≡C-H, que es una molécula lineal. Los orbitales híbridos sp de los dos átomos de carbono se superponen de extremo a extremo para formar un enlace σ entre los átomos de carbono (Figura 5.25). Los orbitales sp restantes forman enlaces σ con átomos de hidrógeno. Los dos orbitales p no hibridados por carbono están colocados de tal manera que se superponen uno al lado del otro y, por tanto, forman dos enlaces π. Así, los dos átomos de carbono del acetileno están unidos por un enlace σ y dos enlaces π, dando lugar a un triple enlace.

Se muestra un diagrama de un átomo de carbono con dos orbitales púrpura en forma de globo marcados como "sp" dispuestos de forma lineal a su alrededor. Cuatro orbitales rojos en forma de globo están alineados en pares en los ejes y y z alrededor del carbono y están marcados como "orbital p no hibridado" y "segundo orbital p no hibridado".
Figura 5.24 Diagrama de los dos orbitales híbridos sp lineales de un átomo de carbono, que se encuentran en línea recta, y los dos orbitales p no hibridados en ángulos perpendiculares.
Se muestran dos diagramas marcados, "a" y "b". El diagrama a muestra dos átomos de carbono con dos orbitales tipo globo de color púrpura dispuestos en un plano alrededor de cada uno de ellos, y cuatro orbitales tipo globo de color rojo dispuestos a lo largo de los ejes y y z perpendiculares al plano de la molécula. Hay una superposición de dos de los orbitales púrpura entre los dos átomos de carbono. Los otros dos orbitales púrpuras que miran hacia el exterior de la molécula se muestran interactuando con los orbitales azules esféricos de dos átomos de hidrógeno. El diagrama b representa una imagen similar a la del diagrama a, pero los orbitales rojos y verticales están interactuando por encima y por debajo y por delante y por detrás del plano de la molécula para formar dos áreas marcadas como "Un enlace pi" y "Segundo enlace pi", respectivamente.
Figura 5.25 (a) En la molécula de acetileno, C2H2, hay dos enlaces C-H σ y un triple enlace C C C C que implica un enlace C-C σ y dos enlaces C-C π. Las líneas discontinuas, cada una de las cuales conecta dos lóbulos, indican la superposición lado a lado de los cuatro orbitales p no hibridados. (b) Esto muestra el esquema general de los enlaces en el C2H2. Los dos lóbulos de cada uno de los enlaces π se sitúan uno frente al otro alrededor de la línea del enlace C-C σ.

En la hibridación solo intervienen los enlaces σ, los pares de electrones solitarios y los electrones simples no apareados (radicales). Las estructuras exhiben estas características describen la correcta hibridación de los átomos. Sin embargo, muchas estructuras también incluyen formas de resonancia. Recuerde que las formas de resonancia se producen cuando son posibles varias disposiciones de los enlaces π. Dado que la disposición de los enlaces π implica solo los orbitales no hibridados, la resonancia no influye en la asignación de la hibridación.

Por ejemplo, la molécula de benceno tiene dos formas de resonancia (Figura 5.26). Podemos utilizar cualquiera de estas formas para determinar que cada uno de los átomos de carbono está unido a otros tres átomos sin pares solitarios, por lo que la hibridación correcta es sp2. Los electrones de los orbitales p no hibridados forman enlaces π. Ninguna de las dos estructuras de resonancia describe completamente los electrones de los enlaces π. No están localizados en una posición u otra, sino que en realidad están deslocalizados por todo el anillo. La teoría de enlace de valencia no aborda fácilmente la deslocalización. El enlace en las moléculas con formas de resonancia se describe mejor mediante la teoría de los orbitales moleculares (consulte el siguiente módulo).

Se muestra un diagrama formado por dos estructuras de Lewis conectadas por una flecha de doble punta. La imagen de la izquierda muestra seis átomos de carbono unidos con enlaces dobles y simples alternativamente para formar un anillo de seis lados. Cada carbono también está unido con un enlace simple a un átomo de hidrógeno. La imagen de la derecha muestra la misma estructura, pero los enlaces dobles y simples entre los átomos de carbono cambiaron de posición.
Figura 5.26 Cada átomo de carbono del benceno, C6H6, está hibridado sp2, independientemente de la forma de resonancia que se considere. Los electrones de los enlaces π no están localizados en un conjunto de orbitales p o en otro, sino deslocalizados en toda la molécula.

Ejemplo 5.5

Asignación de la hibridación que implica la resonancia

Algunas lluvias ácidas son el resultado de la reacción del dióxido de azufre con el vapor de agua atmosférico, seguida de la formación de ácido sulfúrico. El dióxido de azufre, SO2, es un componente principal de los gases volcánicos, así como un producto de la combustión del carbón que contiene azufre. ¿Cuál es la hibridación del átomo de S en el SO2?

Solución

Las estructuras de resonancia del SO2 son Se muestran dos estructuras de Lewis conectadas por una flecha de doble punta. La estructura de la izquierda muestra un átomo de azufre con un par solitario de electrones y signo positivo que está unido con enlace simple por un lado a un átomo de oxígeno con tres pares solitarios de electrones y signo negativo. El átomo de azufre tiene un doble enlace por el otro lado con otro átomo de oxígeno con dos pares solitarios de electrones. La estructura de la derecha es la misma que la de la izquierda, salvo que se ha cambiado la posición del átomo de oxígeno de doble enlace. En ambas estructuras los átomos de oxígeno unidos forman un ángulo agudo con respecto al átomo de azufre.

El átomo de azufre está rodeado por dos enlaces y un par solitario de electrones en cualquier estructura de resonancia. Por lo tanto, la geometría del par de electrones es trigonal plana, y la hibridación del átomo de azufre es sp2.

Compruebe lo aprendido

Otro ácido de la lluvia ácida es el ácido nítrico, HNO3, que se produce por la reacción del dióxido de nitrógeno, NO2, con el vapor de agua atmosférico. ¿Cuál es la hibridación del átomo de nitrógeno en el NO2? (Nota: el electrón solitario del nitrógeno ocupa un orbital hibridado como lo haría un par solitario).

Respuesta:

sp2

Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/qu%C3%ADmica-comenzando-%C3%A1tomos-2ed/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/qu%C3%ADmica-comenzando-%C3%A1tomos-2ed/pages/1-introduccion
Información sobre citas

© 19 may. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.