Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Química: Comenzando con los átomos 2ed

5.2 Orbitales atómicos híbridos

Química: Comenzando con los átomos 2ed5.2 Orbitales atómicos híbridos
Buscar términos clave o texto.

Objetivos de aprendizaje

Al final de esta sección, podrá:

  • Explicar el concepto de hibridación de los orbitales atómicos.
  • Determinar los orbitales híbridos asociados a varias geometrías moleculares.

Pensar en términos de orbitales atómicos superpuestos es una forma de explicar cómo se forman los enlaces químicos en las moléculas diatómicas. Sin embargo, necesitamos un modelo más detallado para entender cómo las moléculas con más de dos átomos forman enlaces estables. Por ejemplo, consideremos la molécula de agua, en la que tenemos un átomo de oxígeno que se une a dos átomos de hidrógeno. El oxígeno tiene la configuración electrónica 1s22s22p4, con dos electrones no apareados (uno en cada uno de los dos orbitales 2p). La teoría de enlace de valencia predeciría que los dos enlaces O-H se forman a partir de la superposición de estos dos orbitales 2p con los orbitales 1s de los átomos de hidrógeno. Si ese fuera el caso, el ángulo de enlace sería de 90°, como se muestra en la Figura 5.6, porque los orbitales p son perpendiculares entre sí. Las pruebas experimentales demuestran que el ángulo de enlace es de 104,5°, no de 90°. La predicción del modelo de la teoría del enlace de valencia no coincide con las observaciones del mundo real de una molécula de agua; se necesita un modelo diferente.

Figura 5.6 La superposición hipotética de dos de los orbitales 2p de un átomo de oxígeno (rojo) con los orbitales 1s de dos átomos de hidrógeno (azules) produciría un ángulo de enlace de 90°. Esto no coincide con la evidencia experimental.1

Los cálculos mecánico-cuánticos sugieren por qué los ángulos de enlace observados en el H2O difieren de los predichos por la superposición del orbital 1s de los átomos de hidrógeno con los orbitales 2p del átomo de oxígeno. La expresión matemática conocida como función de onda, ψ, contiene información sobre cada orbital y las propiedades ondulatorias de los electrones en un átomo aislado. Cuando los átomos se unen en una molécula, las funciones de onda se combinan para producir nuevas descripciones matemáticas que tienen formas diferentes. Este proceso de combinación de las funciones de onda de los orbitales atómicos se denomina hibridación y se realiza matemáticamente mediante la combinación lineal de orbitales atómicos, CLOA (una técnica que volveremos a encontrar más adelante). Los nuevos orbitales resultantes se denominan orbitales híbridos. Los orbitales de valencia en un átomo de oxígeno aislado son un orbital 2s y tres orbitales 2p. Los orbitales de valencia de un átomo de oxígeno en una molécula de agua son diferentes; consisten en cuatro orbitales híbridos equivalentes que apuntan aproximadamente hacia las esquinas de un tetraedro (Figura 5.7). En consecuencia, la superposición de los orbitales O y H debería dar lugar a un ángulo de enlace tetraédrico (109,5°). El ángulo observado de 104,5° es una prueba experimental para la que los cálculos mecánico-cuánticos ofrecen una explicación útil: La teoría de enlace de valencia debe incluir un componente de hibridación para ofrecer predicciones precisas.

Figura 5.7 (a) Una molécula de agua tiene cuatro regiones de densidad electrónica, por lo que la teoría VSEPR predice una disposición tetraédrica de orbitales híbridos. (b) Dos de los orbitales híbridos del oxígeno contienen pares solitarios, y los otros dos se superponen con los orbitales 1s de los átomos de hidrógeno para formar los enlaces O-H en el H2O. Esta descripción es más coherente con la estructura experimental.

Las siguientes ideas son importantes para entender la hibridación:

  1. Los orbitales híbridos no existen en los átomos aislados. Solo se forman en los átomos con enlaces covalentes.
  2. Los orbitales híbridos tienen formas y orientaciones muy diferentes a las de los orbitales atómicos de los átomos aislados.
  3. La combinación de orbitales atómicos produce un conjunto de orbitales híbridos. El número de orbitales híbridos en un conjunto es igual al número de orbitales atómicos que se combinaron para producir el conjunto.
  4. Todos los orbitales de un conjunto de orbitales híbridos son equivalentes en forma y energía.
  5. El tipo de orbitales híbridos que se forman en un átomo enlazado depende de su geometría de pares de electrones, tal y como predice la teoría VSEPR.
  6. Los orbitales híbridos se superponen para formar enlaces σ. Los orbitales no hibridados se superponen para formar enlaces π.

En las siguientes secciones, discutiremos los tipos comunes de orbitales híbridos.

sp Hibridación

El átomo de berilio de una molécula gaseosa de BeCl2 es un ejemplo de átomo central sin pares solitarios de electrones en una disposición lineal de tres átomos. Hay dos regiones de densidad electrónica de valencia en la molécula de BeCl2 que corresponden a los dos enlaces covalentes Be-Cl. Para acomodar estos dos dominios de electrones, dos de los cuatro orbitales de valencia del átomo de Be se mezclarán para dar lugar a dos orbitales híbridos. Este proceso de hibridación implica la mezcla del orbital de valencia s con uno de los orbitales de valencia p para dar lugar a dos orbitales híbridos sp equivalentes que se orientan en una geometría lineal (Figura 5.8). En esta figura, el conjunto de orbitales sp parece tener una forma similar a la del orbital p original, pero hay una diferencia importante. El número de orbitales atómicos combinados siempre es igual al número de orbitales híbridos formados. El orbital p es un orbital que puede contener hasta dos electrones. El conjunto sp son dos orbitales equivalentes que apuntan a 180° el uno del otro. Los dos electrones que estaban originalmente en el orbital s se distribuyen ahora en los dos orbitales sp, que están medio llenos. En el BeCl2 gaseoso, estos orbitales híbridos medio llenos se superpondrán con los orbitales de los átomos de cloro para formar dos enlaces σ idénticos.

Figura 5.8 La hibridación de un orbital s (azul) y un orbital p (rojo) del mismo átomo produce dos orbitales híbridos sp (amarillo). Cada orbital híbrido está orientado principalmente en una sola dirección. Observe que cada orbital sp contiene un lóbulo que es significativamente mayor que el otro. El conjunto de dos orbitales sp están orientados a 180°, lo que es coherente con la geometría para dos dominios.

Ilustramos las diferencias electrónicas en un átomo de Be aislado y en el átomo de Be enlazado en el diagrama de niveles de energía orbital en la Figura 5.9. Estos diagramas representan cada orbital mediante una línea horizontal (que indica su energía) y cada electrón mediante una flecha. La energía aumenta hacia la parte superior del diagrama. Utilizamos una flecha hacia arriba para indicar un electrón en un orbital y dos flechas (hacia arriba y hacia abajo) para indicar dos electrones de espín opuesto.

Figura 5.9 Este diagrama de nivel de energía orbital muestra los orbitales hibridados sp del Be en la molécula lineal de BeCl2. Cada uno de los dos orbitales híbridos sp contiene un electrón y por lo tanto está medio lleno y disponible para el enlace mediante la superposición con un orbital Cl 3p.

Cuando los orbitales atómicos se hibridan, los electrones de valencia ocupan los orbitales recién creados. El átomo de Be tenía dos electrones de valencia, por lo que cada uno de los orbitales sp recibe uno de estos electrones. Cada uno de estos electrones se empareja con el electrón no apareado de un átomo de cloro cuando un orbital híbrido y un orbital de cloro se superponen durante la formación de los enlaces Be-Cl.

Cualquier átomo central rodeado por solo dos regiones de densidad electrónica de valencia en una molécula mostrará hibridación sp. Otros ejemplos son el átomo de mercurio en la molécula lineal HgCl2, el átomo de zinc en Zn(CH3)2, que contiene una disposición lineal C-Zn-C, y los átomos de carbono en HCCH y CO2.

hibridación sp2

Los orbitales de valencia de un átomo central rodeado de tres regiones de densidad electrónica están formados por un conjunto de tres orbitales híbridos sp2 y un orbital p no hibridado. Esta disposición resulta de la hibridación sp2, la mezcla de un orbital s y dos orbitales p para producir tres orbitales híbridos idénticos orientados en una geometría trigonal plana (Figura 5.10).

Figura 5.10 La hibridación de un orbital s (azul) y dos orbitales p (rojo) produce tres orbitales hibridados sp2 equivalentes (amarillo) orientados a 120° entre sí. El orbital p restante no hibridado no se muestra aquí, pero se encuentra a lo largo del eje z.

Aunque la mecánica cuántica produce los lóbulos orbitales "regordetes", como se representa en la Figura 5.10, a veces, para mayor claridad, estos orbitales se dibujan más finos y sin los lóbulos menores, como en la Figura 5.11, para no ocultar otras características de una determinada ilustración. Utilizaremos estas representaciones "más finas" siempre que la vista real esté demasiado aglomerada para visualizarla fácilmente.

Figura 5.11 Esta forma alternativa de dibujar los orbitales híbridos trigonales planos sp2 se utiliza a veces en las figuras más concurridas.

La estructura observada de la molécula de borano, BH3, sugiere una hibridación sp2 para el boro en este compuesto. La molécula es trigonal plana, y el átomo de boro participa en tres enlaces con átomos de hidrógeno (Figura 5.12). Podemos ilustrar la comparación de los orbitales y la distribución de los electrones en un átomo de boro aislado y en el átomo enlazado en BH3 como se muestra en el diagrama de niveles de energía orbital en la Figura 5.13. Redistribuimos los tres electrones de valencia del átomo de boro en los tres orbitales híbridos sp2, y cada electrón de boro se empareja con un electrón de hidrógeno cuando se forman los enlaces B-H.

Figura 5.12 El BH3 es una molécula deficiente en electrones con una estructura trigonal plana.
Figura 5.13 En un átomo B aislado, hay un orbital de valencia 2s y tres 2p. Cuando el boro se encuentra en una molécula con tres regiones de densidad electrónica, tres de los orbitales se hibridan y crean un conjunto de tres orbitales sp2 y un orbital 2p no hibridado. Los tres orbitales híbridos medio llenos se superponen cada uno con un orbital de un átomo de hidrógeno para formar tres enlaces σ en el BH3.

Cualquier átomo central rodeado por tres regiones de densidad electrónica mostrará hibridación sp2. Esto incluye moléculas con un par solitario en el átomo central, como el ClNO (Figura 5.14), o moléculas con dos enlaces simples y un doble enlace conectado al átomo central, como en el formaldehído, CH2O, y el eteno, H2CCH2.

Figura 5.14 El átomo o átomos centrales de cada una de las estructuras mostradas contienen tres regiones de densidad electrónica y están hibridadas sp2. Como sabemos por el análisis de la teoría VSEPR, una región de densidad electrónica contiene todos los electrones que apuntan en una dirección. Un par solitario, un electrón no apareado, un enlace simple o un enlace múltiple contarían cada uno como una región de densidad electrónica.

hibridación sp3

Los orbitales de valencia de un átomo rodeado por una disposición tetraédrica de pares de enlace y pares solitarios consisten en un conjunto de cuatro orbitales híbridos sp3. Los híbridos son el resultado de la mezcla de un orbital s y los tres orbitales p que produce cuatro orbitales híbridos sp3 idénticos (Figura 5.15). Cada uno de estos orbitales híbridos apunta hacia una esquina diferente del tetraedro.

Figura 5.15 La hibridación de un orbital s (azul) y tres orbitales p (rojo) produce cuatro orbitales sp3 hibridados equivalentes (amarillo) orientados a 109,5° uno respecto del otro.

Una molécula de metano, CH4, está formada por un átomo de carbono rodeado por cuatro átomos de hidrógeno en las esquinas de un tetraedro. El átomo de carbono del metano presenta hibridación sp3. En la Figura 5.16 ilustramos los orbitales y la distribución de electrones en un átomo de carbono aislado y en el átomo enlazado en CH4. Los cuatro electrones de valencia del átomo de carbono se distribuyen por igual en los orbitales híbridos, y cada electrón del carbono se empareja con un electrón de hidrógeno cuando se forman los enlaces C-H.

Figura 5.16 Los cuatro orbitales atómicos de valencia de un átomo de carbono aislado se hibridan todos cuando el carbono se une en una molécula como el CH4 con cuatro regiones de densidad electrónica. Esto crea cuatro orbitales hibridados sp3 equivalentes. La superposición de cada uno de los orbitales híbridos con un orbital de hidrógeno crea un enlace C-H σ.

En una molécula de metano, el orbital 1s de cada uno de los cuatro átomos de hidrógeno se superpone con uno de los cuatro orbitales sp3 del átomo de carbono para formar un enlace sigma (σ). Esto da lugar a la formación de cuatro enlaces covalentes fuertes y equivalentes entre el átomo de carbono y cada uno de los átomos de hidrógeno para producir la molécula de metano, CH4.

La estructura del etano, C2H6, es similar a la del metano en el sentido de que cada carbono del etano tiene cuatro átomos vecinos dispuestos en las esquinas de un tetraedro: tres átomos de hidrógeno y uno de carbono (Figura 5.17). Sin embargo, en el etano un orbital sp3 de un átomo de carbono se superpone de extremo a extremo con un orbital sp3 de un segundo átomo de carbono para formar un enlace σ entre los dos átomos de carbono. Cada uno de los orbitales híbridos sp3 restantes se superpone con un orbital s de un átomo de hidrógeno para formar enlaces σ carbono-hidrógeno. La estructura y el esquema general de los orbitales de enlace del etano se muestran en la Figura 5.17. La orientación de los dos grupos CH3 no es fija entre sí. Las pruebas experimentales demuestran que la rotación alrededor de los enlaces σ se produce fácilmente.

Figura 5.17 (a) En la molécula de etano, C2H6, cada carbono tiene cuatro orbitales sp3. (b) Estos cuatro orbitales se superponen para formar siete enlaces σ.

Un orbital híbrido sp3 también puede albergar un par solitario de electrones. Por ejemplo, el átomo de nitrógeno del amoníaco está rodeado por tres pares de enlaces y un par solitario de electrones dirigidos a las cuatro esquinas de un tetraedro. El átomo de nitrógeno está hibridado sp3 con un orbital híbrido ocupado por el par solitario.

La estructura molecular del agua es consistente con una disposición tetraédrica de dos pares solitarios y dos pares de electrones de enlace. Así, decimos que el átomo de oxígeno está hibridado sp3, con dos de los orbitales híbridos ocupados por pares solitarios y dos por pares de enlace. Dado que los pares solitarios ocupan más espacio que los pares de enlace, las estructuras que contienen pares solitarios tienen ángulos de enlace ligeramente distorsionados con respecto al ideal. Los tetraedros perfectos tienen ángulos de 109,5°, pero los ángulos observados en el amoníaco (107,3°) y el agua (104,5°) son ligeramente menores. Otros ejemplos de hibridación sp3 son el CCl4, el PCl3 y el NCl3.

Hibridación sp3d y sp3d2

Para describir los cinco orbitales de enlace en una disposición bipiramidal trigonal, debemos utilizar cinco de los orbitales atómicos de la capa de valencia (el orbital s, los tres orbitales p y uno de los orbitales d), lo que da cinco orbitales híbridos sp3d. Con una disposición octaédrica de seis orbitales híbridos, debemos utilizar seis orbitales atómicos de la capa de valencia (el orbital s, los tres orbitales p y dos de los orbitales d de su capa de valencia), lo que da seis orbitales híbridos sp3d2. Estas hibridaciones solo son posibles para los átomos que tienen orbitales d en sus subcapas de valencia (es decir, no los del primer o segundo periodo).

En una molécula de pentacloruro de fósforo, PCl5, hay cinco enlaces P-Cl (por tanto, cinco pares de electrones de valencia alrededor del átomo de fósforo) dirigidos hacia las esquinas de una bipirámide trigonal. Utilizamos el orbital 3s, los tres orbitales 3p y uno de los orbitales 3d para formar el conjunto de cinco orbitales híbridos sp3d (Figura 5.19) que intervienen en los enlaces P-Cl. Otros átomos que presentan hibridación sp3d son el átomo de azufre en SF4 y los átomos de cloro en ClF3 y en ClF4+.ClF4+. (Los electrones de los átomos de flúor se omiten para mayor claridad).

Figura 5.18 Los tres compuestos representados presentan hibridación sp3d en el átomo central y una forma de bipirámide trigonal. SF4 y ClF4+ClF4+ tienen un par solitario de electrones en el átomo central, y el ClF3 tiene dos pares solitarios que le dan la forma de T que se muestra.
Figura 5.19 (a) Las cinco regiones de densidad electrónica alrededor del fósforo en el PCl5 requieren cinco orbitales híbridos sp3d. (b) Estos orbitales se combinan para formar una estructura bipiramidal trigonal con cada lóbulo grande del orbital híbrido apuntando a un vértice. Como antes, también hay pequeños lóbulos que apuntan en la dirección opuesta para cada orbital (no se muestran para mayor claridad).

El átomo de azufre del hexafluoruro de azufre, SF6, presenta hibridación sp3d2. Una molécula de hexafluoruro de azufre tiene seis pares de electrones de enlace que conectan seis átomos de flúor con un único átomo de azufre. No hay pares solitarios de electrones en el átomo central. Para enlazar seis átomos de flúor, el orbital 3s, los tres orbitales 3p y dos de los orbitales 3d forman seis orbitales híbridos sp3d2 equivalentes, cada uno dirigido hacia una esquina diferente de un octaedro. Otros átomos que presentan hibridación sp3d2 son el átomo de fósforo en PCl6,PCl6, el átomo de yodo en los interhalógenos IF6+,IF6+, IF5, ICl4,ICl4, IF4IF4 y el átomo de xenón en XeF4

Figura 5.20 (a) El hexafluoruro de azufre, SF6, tiene una estructura octaédrica que requiere hibridación sp3d2. (b) Los seis orbitales sp3d2 forman una estructura octaédrica alrededor del azufre. De nuevo, el lóbulo menor de cada orbital no se muestra para mayor claridad.

Asignación de orbitales híbridos a los átomos centrales

La hibridación de un átomo se determina en función del número de regiones de densidad electrónica que lo rodean. Las disposiciones geométricas características de los distintos conjuntos de orbitales híbridos se muestran en la Figura 5.21. Estas disposiciones son idénticas a las de las geometrías de pares de electrones predichas por la teoría VSEPR. La teoría VSEPR predice las formas de las moléculas, y la teoría de los orbitales híbridos ofrece una explicación de cómo se forman esas formas. Para hallar la hibridación de un átomo central, podemos utilizar las siguientes pautas:

  1. Determinar la estructura de Lewis de la molécula.
  2. Determinar el número de regiones de densidad electrónica alrededor de un átomo utilizando la teoría VSEPR, en la que los enlaces simples, los enlaces múltiples, los radicales y los pares solitarios cuentan cada uno como una región.
  3. Asignar el conjunto de orbitales hibridados de la Figura 5.21 que corresponde a esta geometría.
Figura 5.21 Las formas de los conjuntos de orbitales hibridados coinciden con las geometrías de los pares de electrones. Por ejemplo, un átomo rodeado por tres regiones de densidad electrónica está hibridado sp2, y los tres orbitales sp2 están dispuestos de forma trigonal plana.

Es importante recordar que la hibridación se ideó para racionalizar las geometrías moleculares observadas experimentalmente. El modelo funciona bien para las moléculas que contienen átomos centrales pequeños, en las que los pares de electrones de valencia están cerca en el espacio. Sin embargo, para los átomos centrales más grandes, los pares de electrones de la cáscara de valencia están más lejos del núcleo y hay menos repulsiones. Sus compuestos presentan estructuras que a menudo no son consistentes con la teoría VSEPR, y los orbitales hibridados no son necesarios para explicar los datos observados. Por ejemplo, hemos discutido el ángulo de enlace H-O-H en H2O, 104,5°, que es más consistente con los orbitales híbridos sp3 (109,5°) en el átomo central que con los orbitales 2p (90°). El azufre está en el mismo grupo que el oxígeno, y el H2S tiene una estructura de Lewis similar. Sin embargo, tiene un ángulo de enlace mucho menor (92,1°), lo que indica una hibridación mucho menor en el azufre que en el oxígeno. Siguiendo hacia abajo en el grupo, el telurio es incluso mayor que el azufre, y para el H2Te, el ángulo de enlace observado (90°) es consistente con la superposición de los orbitales 5p, sin invocar la hibridación. Invocamos la hibridación cuando es necesario para explicar las estructuras observadas.

Ejemplo 5.3

Asignación de la hibridación

El sulfato de amonio es importante como fertilizante. ¿Cuál es la hibridación del átomo de azufre en el ion sulfato, SO42−?SO42−?

Solución

La estructura de Lewis del sulfato muestra que hay cuatro regiones de densidad electrónica. La hibridación es sp3.

Compruebe lo aprendido

¿Cuál es la hibridación del átomo de selenio en el SeF4?

Respuesta:

El átomo de selenio está hibridado sp3d.

Ejemplo 5.4

Asignación de la hibridación

La urea, NH2C(O)NH2, se utiliza a veces como fuente de nitrógeno en los fertilizantes. ¿Cuál es la hibridación del átomo de carbono en la urea?

Solución

La estructura de Lewis de la urea es

El átomo de carbono está rodeado por tres regiones de densidad electrónica, situadas en una disposición trigonal plana. La hibridación en una geometría de pares de electrones trigonal plana es sp2 (Figura 5.21), que es la hibridación del átomo de carbono en la urea.

Compruebe lo aprendido

El ácido acético, H3CC(O)OH, es la molécula que da al vinagre su olor y su sabor agrio. ¿Cuál es la hibridación de los dos átomos de carbono del ácido acético?

Respuesta:

H3C, sp3; C(O)OH, sp2

Notas a pie de página

  • 1Tenga en cuenta que los orbitales a veces se dibujan en forma de "globo" alargado en lugar de una forma más realista "regordeta" para que la geometría sea más fácil de visualizar.
Cita/Atribución

Este libro no puede ser utilizado en la formación de grandes modelos de lenguaje ni incorporado de otra manera en grandes modelos de lenguaje u ofertas de IA generativa sin el permiso de OpenStax.

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/qu%C3%ADmica-comenzando-%C3%A1tomos-2ed/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/qu%C3%ADmica-comenzando-%C3%A1tomos-2ed/pages/1-introduccion
Información sobre citas

© 19 may. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.