Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Química: Comenzando con los átomos 2ed

18.12 Incidencia, preparación y propiedades de los gases nobles

Química: Comenzando con los átomos 2ed18.12 Incidencia, preparación y propiedades de los gases nobles

Menú
Índice
  1. Prefacio
  2. 1 Ideas esenciales
    1. Introducción
    2. 1.1 La química en su contexto
    3. 1.2 Fases y clasificación de la materia
    4. 1.3 Propiedades físicas y químicas
    5. 1.4 Mediciones
    6. 1.5 Incertidumbre, exactitud y precisión de las mediciones
    7. 1.6 Tratamiento matemático de los resultados de las mediciones
    8. Términos clave
    9. Ecuaciones clave
    10. Resumen
    11. Ejercicios
  3. 2 Átomos, moléculas e iones
    1. Introducción
    2. 2.1 Las primeras ideas de la teoría atómica
    3. 2.2 Evolución de la teoría atómica
    4. 2.3 Estructura atómica y simbolismo
    5. 2.4 Fórmulas químicas
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  4. 3 Estructura electrónica y propiedades periódicas de los elementos
    1. Introducción
    2. 3.1 Energía electromagnética
    3. 3.2 El modelo de Bohr
    4. 3.3 Desarrollo de la teoría cuántica
    5. 3.4 Estructura electrónica de los átomos (configuraciones de electrones)
    6. 3.5 Variaciones periódicas de las propiedades de los elementos
    7. 3.6 La tabla periódica
    8. 3.7 Compuestos iónicos y moleculares
    9. Términos clave
    10. Ecuaciones clave
    11. Resumen
    12. Ejercicios
  5. 4 Enlace químico y geometría molecular
    1. Introducción
    2. 4.1 Enlace iónico
    3. 4.2 Enlace covalente
    4. 4.3 Nomenclatura química
    5. 4.4 Símbolos y estructuras de Lewis
    6. 4.5 Cargas formales y resonancia
    7. 4.6 Estructura molecular y polaridad
    8. Términos clave
    9. Ecuaciones clave
    10. Resumen
    11. Ejercicios
  6. 5 Teorías avanzadas de enlace
    1. Introducción
    2. 5.1 Teoría de enlace de valencia
    3. 5.2 Orbitales atómicos híbridos
    4. 5.3 Enlaces múltiples
    5. 5.4 Teoría de los orbitales moleculares
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  7. 6 Composición de sustancias y soluciones
    1. Introducción
    2. 6.1 Fórmula de masa
    3. 6.2 Determinación de fórmulas empíricas y moleculares
    4. 6.3 Molaridad
    5. 6.4 Otras unidades para las concentraciones de las soluciones
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  8. 7 Estequiometría de las reacciones químicas
    1. Introducción
    2. 7.1 Escritura y balance de ecuaciones químicas
    3. 7.2 Clasificación de las reacciones químicas
    4. 7.3 Estequiometría de la reacción
    5. 7.4 Rendimiento de la reacción
    6. 7.5 Análisis químico cuantitativo
    7. Términos clave
    8. Ecuaciones clave
    9. Resumen
    10. Ejercicios
  9. 8 Gases
    1. Introducción
    2. 8.1 Presión del gas
    3. 8.2 Relaciones entre presión, volumen, cantidad y temperatura: la ley de los gases ideales
    4. 8.3 Estequiometría de sustancias gaseosas, mezclas y reacciones
    5. 8.4 Efusión y difusión de los gases
    6. 8.5 La teoría cinético-molecular
    7. 8.6 Comportamiento no ideal de los gases
    8. Términos clave
    9. Ecuaciones clave
    10. Resumen
    11. Ejercicios
  10. 9 Termoquímica
    1. Introducción
    2. 9.1 Conceptos básicos de energía
    3. 9.2 Calorimetría
    4. 9.3 Entalpía
    5. 9.4 Fuerza de los enlaces iónicos y covalentes
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  11. 10 Líquidos y sólidos
    1. Introducción
    2. 10.1 Fuerzas intermoleculares
    3. 10.2 Propiedades de los líquidos
    4. 10.3 Transiciones de fase
    5. 10.4 Diagramas de fase
    6. 10.5 El estado sólido de la materia
    7. 10.6 Estructuras de red en los sólidos cristalinos
    8. Términos clave
    9. Ecuaciones clave
    10. Resumen
    11. Ejercicios
  12. 11 Soluciones y coloides
    1. Introducción
    2. 11.1 El proceso de disolución
    3. 11.2 Electrolitos
    4. 11.3 Solubilidad
    5. 11.4 Propiedades coligativas
    6. 11.5 Coloides
    7. Términos clave
    8. Ecuaciones clave
    9. Resumen
    10. Ejercicios
  13. 12 Termodinámica
    1. Introducción
    2. 12.1 Espontaneidad
    3. 12.2 Entropía
    4. 12.3 La segunda y la tercera ley de la termodinámica
    5. 12.4 Energía libre
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  14. 13 Conceptos fundamentales del equilibrio
    1. Introducción
    2. 13.1 Equilibrio químico
    3. 13.2 Constantes de equilibrio
    4. 13.3 Equilibrios cambiantes: el principio de Le Châtelier
    5. 13.4 Cálculos de equilibrio
    6. Términos clave
    7. Ecuaciones clave
    8. Resumen
    9. Ejercicios
  15. 14 Equilibrios ácido-base
    1. Introducción
    2. 14.1 Ácidos y Bases de Brønsted-Lowry
    3. 14.2 pH y pOH
    4. 14.3 Fuerza relativa de los ácidos y las bases
    5. 14.4 Hidrólisis de sales
    6. 14.5 Ácidos polipróticos
    7. 14.6 Tampones
    8. 14.7 Titulaciones ácido-base
    9. Términos clave
    10. Ecuaciones clave
    11. Resumen
    12. Ejercicios
  16. 15 Equilibrios de otras clases de reacción
    1. Introducción
    2. 15.1 Precipitación y disolución
    3. 15.2 Ácidos y Bases de Lewis
    4. 15.3 Equilibrios acoplados
    5. Términos clave
    6. Ecuaciones clave
    7. Resumen
    8. Ejercicios
  17. 16 Electroquímica
    1. Introducción
    2. 16.1 Repaso de química redox
    3. 16.2 Celdas galvánicas
    4. 16.3 Potenciales del electrodo y de la celda
    5. 16.4 Potencial, energía libre y equilibrio
    6. 16.5 Baterías y pilas de combustible
    7. 16.6 Corrosión
    8. 16.7 Electrólisis
    9. Términos clave
    10. Ecuaciones clave
    11. Resumen
    12. Ejercicios
  18. 17 Cinética
    1. Introducción
    2. 17.1 Tasas de reacciones químicas
    3. 17.2 Factores que afectan las tasas de reacción
    4. 17.3 Leyes de velocidad
    5. 17.4 Leyes de tasas integradas
    6. 17.5 Teoría de colisiones
    7. 17.6 Mecanismos de reacción
    8. 17.7 Catálisis
    9. Términos clave
    10. Ecuaciones clave
    11. Resumen
    12. Ejercicios
  19. 18 Metales representativos, metaloides y no metales
    1. Introducción
    2. 18.1 Periodicidad
    3. 18.2 Incidencia y preparación de los metales representativos
    4. 18.3 Estructura y propiedades generales de los metaloides
    5. 18.4 Estructura y propiedades generales de los no metales
    6. 18.5 Incidencia, preparación y compuestos de hidrógeno
    7. 18.6 Incidencia, preparación y propiedades de los carbonatos
    8. 18.7 Incidencia, preparación y propiedades del nitrógeno
    9. 18.8 Incidencia, preparación y propiedades del fósforo
    10. 18.9 Incidencia, preparación y compuestos del oxígeno
    11. 18.10 Incidencia, preparación y propiedades del azufre
    12. 18.11 Incidencia, preparación y propiedades de los halógenos
    13. 18.12 Incidencia, preparación y propiedades de los gases nobles
    14. Términos clave
    15. Resumen
    16. Ejercicios
  20. 19 Metales de transición y química de coordinación
    1. Introducción
    2. 19.1 Incidencia, preparación y propiedades de los metales de transición y sus compuestos
    3. 19.2 Química de coordinación de los metales de transición
    4. 19.3 Propiedades espectroscópicas y magnéticas de los compuestos de coordinación
    5. Términos clave
    6. Resumen
    7. Ejercicios
  21. 20 Química nuclear
    1. Introducción
    2. 20.1 Estructura y estabilidad nuclear
    3. 20.2 Ecuaciones nucleares
    4. 20.3 Decaimiento radiactivo
    5. 20.4 Transmutación y energía nuclear
    6. 20.5 Usos de los radioisótopos
    7. 20.6 Efectos biológicos de la radiación
    8. Términos clave
    9. Ecuaciones clave
    10. Resumen
    11. Ejercicios
  22. 21 Química orgánica
    1. Introducción
    2. 21.1 Hidrocarburos
    3. 21.2 Alcoholes y éteres
    4. 21.3 Aldehídos, cetonas, ácidos carboxílicos y ésteres
    5. 21.4 Aminas y amidas
    6. Términos clave
    7. Resumen
    8. Ejercicios
  23. A La tabla periódica
  24. B Matemáticas esenciales
  25. C Unidades y factores de conversión
  26. D Constantes físicas fundamentales
  27. E Propiedades del agua
  28. F Composición de los ácidos y las bases comerciales
  29. G Propiedades termodinámicas estándar de determinadas sustancias
  30. H Constantes de ionización de los ácidos débiles
  31. I Constantes de ionización de las bases débiles
  32. J Productos de solubilidad
  33. K Constantes de formación de iones complejos
  34. L Potenciales de electrodos estándar (media celda)
  35. M Semivida de varios isótopos radiactivos
  36. Clave de respuestas
    1. Capítulo 1
    2. Capítulo 2
    3. Capítulo 3
    4. Capítulo 4
    5. Capítulo 5
    6. Capítulo 6
    7. Capítulo 7
    8. Capítulo 8
    9. Capítulo 9
    10. Capítulo 10
    11. Capítulo 11
    12. Capítulo 12
    13. Capítulo 13
    14. Capítulo 14
    15. Capítulo 15
    16. Capítulo 16
    17. Capítulo 17
    18. Capítulo 18
    19. Capítulo 19
    20. Capítulo 20
    21. Capítulo 21
  37. Índice

Objetivos de aprendizaje

Al final de esta sección, podrá:

  • Describir las propiedades, la preparación y los usos de los gases nobles

Los elementos del grupo 18 son los gases nobles (helio, neón, argón, criptón, xenón y radón). Se ganaron el nombre de "nobles" porque se suponía que no eran reactivos, ya que tenían capas de valencia llenas. En 1962, el Dr. Neil Bartlett, de la Universidad de Columbia Británica, demostró que esta suposición era falsa.

Estos elementos están presentes en la atmósfera en pequeñas cantidades. Algunos gases naturales contienen un 1 a 2 % de helio en masa. El helio se aísla del gas natural licuando los componentes condensables, dejando solo el helio como gas. Los Estados Unidos posee la mayor parte del suministro comercial mundial de este elemento en sus yacimientos de gas con helio. El argón, el neón, el criptón y el xenón proceden de la destilación fraccionada del aire líquido. El radón procede de otros elementos radiactivos. Más recientemente, se ha observado que este gas radiactivo está presente en cantidades muy pequeñas en suelos y minerales. Sin embargo, su acumulación en edificios bien aislados y herméticamente cerrados constituye un peligro para la salud, principalmente el cáncer de pulmón.

Los puntos de ebullición y de fusión de los gases nobles son extremadamente bajos en relación con los de otras sustancias de masas atómicas o moleculares comparables. Esto se debe a que solo están presentes las débiles fuerzas de dispersión de London, y estas fuerzas solo pueden mantener unidos a los átomos cuando el movimiento molecular es muy ligero, como ocurre a temperaturas muy bajas. El helio es la única sustancia conocida que no se solidifica al enfriarse a presión normal. Permanece en estado líquido cerca del cero absoluto (0,001 K) a presiones ordinarias, pero se solidifica a presiones elevadas.

El helio se utiliza para llenar globos y naves más ligeras que el aire porque no arde, lo que hace que su uso sea más seguro que el del hidrógeno. El helio a altas presiones no es un narcótico como el nitrógeno. Por lo tanto, las mezclas de oxígeno y helio son importantes para los buceadores que trabajan a altas presiones. El uso de una mezcla de helio y oxígeno evita el estado mental de desorientación conocido como narcosis de nitrógeno, el llamado rapto de las profundidades. El helio es importante como atmósfera inerte para la fusión y soldadura de metales fácilmente oxidables y para muchos procesos químicos sensibles al aire.

El helio líquido (punto de ebullición, 4,2 K) es un refrigerante importante para alcanzar las bajas temperaturas necesarias para la investigación criogénica, y es esencial para lograr las bajas temperaturas necesarias para producir la superconducción en los materiales superconductores tradicionales utilizados en potentes imanes y otros dispositivos. Esta capacidad de enfriamiento es necesaria para los imanes utilizados en las imágenes por resonancia magnética, un procedimiento de diagnóstico médico habitual. El otro refrigerante habitual es el nitrógeno líquido (punto de ebullición, 77 K), que es bastante más barato.

El neón es un componente de las lámparas y señales de neón. El paso de una chispa eléctrica a través de un tubo que contiene neón a baja presión genera el conocido brillo rojo del neón. Es posible cambiar el color de la luz mezclando vapor de argón o mercurio con el neón o utilizando tubos de vidrio de un color especial.

El argón era útil en la fabricación de bombillas eléctricas, ya que su menor conductividad térmica y su inercia química lo hacían preferible al nitrógeno para inhibir la vaporización del filamento de tungsteno y prolongar la vida útil de la bombilla. Los tubos fluorescentes suelen contener una mezcla de argón y vapor de mercurio. El argón es el tercer gas más abundante en el aire seco.

Los tubos de flash de criptón-xenón se utilizan para tomar fotografías de alta velocidad. Una descarga eléctrica a través de un tubo de este tipo da una luz muy intensa que solamente dura 150.000150.000 de un segundo. El criptón forma un difluoruro, KrF2, que es térmicamente inestable a temperatura ambiente.

Los compuestos estables de xenón se forman cuando el xenón reacciona con el flúor. El difluoruro de xenón, XeF2, se forma tras calentar un exceso de xenón gaseoso con flúor gaseoso y enfriarlo. El material forma cristales incoloros, que son estables a temperatura ambiente en una atmósfera seca. El tetrafluoruro de xenón, XeF4, y el hexafluoruro de xenón, XeF6, se preparan de forma análoga, con una cantidad estequiométrica de flúor y un exceso de flúor, respectivamente. Los compuestos con oxígeno se preparan sustituyendo los átomos de flúor de los fluoruros de xenón por oxígeno.

Cuando el XeF6 reacciona con el agua, se produce una solución de XeO3 y el xenón permanece en el estado de oxidación 6+:

XeF6(s)+3H2O(l)XeO3(aq)+6HF(aq)XeF6(s)+3H2O(l)XeO3(aq)+6HF(aq)

El trióxido de xenón sólido y seco, XeO3, es extremadamente explosivo: detonará espontáneamente. Tanto el XeF6 como el XeO3 se desproporcionan en solución básica, produciendo xenón, oxígeno y sales del ion de perxenato, XeO64−,XeO64−, en el que el xenón alcanza su estado de oxidación máximo de 8+.

Al parecer, el radón forma RnF2; las pruebas de este compuesto proceden de las técnicas de rastreo radioquímico.

Los compuestos inestables de argón se forman a bajas temperaturas, pero no se conocen compuestos estables de helio y neón.

Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/qu%C3%ADmica-comenzando-%C3%A1tomos-2ed/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/qu%C3%ADmica-comenzando-%C3%A1tomos-2ed/pages/1-introduccion
Información sobre citas

© 19 may. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.