Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Physics

Introduction

PhysicsIntroduction

Menu
Table of contents
  1. Preface
  2. 1 What is Physics?
    1. Introduction
    2. 1.1 Physics: Definitions and Applications
    3. 1.2 The Scientific Methods
    4. 1.3 The Language of Physics: Physical Quantities and Units
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  3. 2 Motion in One Dimension
    1. Introduction
    2. 2.1 Relative Motion, Distance, and Displacement
    3. 2.2 Speed and Velocity
    4. 2.3 Position vs. Time Graphs
    5. 2.4 Velocity vs. Time Graphs
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  4. 3 Acceleration
    1. Introduction
    2. 3.1 Acceleration
    3. 3.2 Representing Acceleration with Equations and Graphs
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  5. 4 Forces and Newton’s Laws of Motion
    1. Introduction
    2. 4.1 Force
    3. 4.2 Newton's First Law of Motion: Inertia
    4. 4.3 Newton's Second Law of Motion
    5. 4.4 Newton's Third Law of Motion
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  6. 5 Motion in Two Dimensions
    1. Introduction
    2. 5.1 Vector Addition and Subtraction: Graphical Methods
    3. 5.2 Vector Addition and Subtraction: Analytical Methods
    4. 5.3 Projectile Motion
    5. 5.4 Inclined Planes
    6. 5.5 Simple Harmonic Motion
    7. Key Terms
    8. Section Summary
    9. Key Equations
    10. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    11. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  7. 6 Circular and Rotational Motion
    1. Introduction
    2. 6.1 Angle of Rotation and Angular Velocity
    3. 6.2 Uniform Circular Motion
    4. 6.3 Rotational Motion
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  8. 7 Newton's Law of Gravitation
    1. Introduction
    2. 7.1 Kepler's Laws of Planetary Motion
    3. 7.2 Newton's Law of Universal Gravitation and Einstein's Theory of General Relativity
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  9. 8 Momentum
    1. Introduction
    2. 8.1 Linear Momentum, Force, and Impulse
    3. 8.2 Conservation of Momentum
    4. 8.3 Elastic and Inelastic Collisions
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  10. 9 Work, Energy, and Simple Machines
    1. Introduction
    2. 9.1 Work, Power, and the Work–Energy Theorem
    3. 9.2 Mechanical Energy and Conservation of Energy
    4. 9.3 Simple Machines
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  11. 10 Special Relativity
    1. Introduction
    2. 10.1 Postulates of Special Relativity
    3. 10.2 Consequences of Special Relativity
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  12. 11 Thermal Energy, Heat, and Work
    1. Introduction
    2. 11.1 Temperature and Thermal Energy
    3. 11.2 Heat, Specific Heat, and Heat Transfer
    4. 11.3 Phase Change and Latent Heat
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  13. 12 Thermodynamics
    1. Introduction
    2. 12.1 Zeroth Law of Thermodynamics: Thermal Equilibrium
    3. 12.2 First law of Thermodynamics: Thermal Energy and Work
    4. 12.3 Second Law of Thermodynamics: Entropy
    5. 12.4 Applications of Thermodynamics: Heat Engines, Heat Pumps, and Refrigerators
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  14. 13 Waves and Their Properties
    1. Introduction
    2. 13.1 Types of Waves
    3. 13.2 Wave Properties: Speed, Amplitude, Frequency, and Period
    4. 13.3 Wave Interaction: Superposition and Interference
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  15. 14 Sound
    1. Introduction
    2. 14.1 Speed of Sound, Frequency, and Wavelength
    3. 14.2 Sound Intensity and Sound Level
    4. 14.3 Doppler Effect and Sonic Booms
    5. 14.4 Sound Interference and Resonance
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  16. 15 Light
    1. Introduction
    2. 15.1 The Electromagnetic Spectrum
    3. 15.2 The Behavior of Electromagnetic Radiation
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  17. 16 Mirrors and Lenses
    1. Introduction
    2. 16.1 Reflection
    3. 16.2 Refraction
    4. 16.3 Lenses
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  18. 17 Diffraction and Interference
    1. Introduction
    2. 17.1 Understanding Diffraction and Interference
    3. 17.2 Applications of Diffraction, Interference, and Coherence
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  19. 18 Static Electricity
    1. Introduction
    2. 18.1 Electrical Charges, Conservation of Charge, and Transfer of Charge
    3. 18.2 Coulomb's law
    4. 18.3 Electric Field
    5. 18.4 Electric Potential
    6. 18.5 Capacitors and Dielectrics
    7. Key Terms
    8. Section Summary
    9. Key Equations
    10. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    11. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  20. 19 Electrical Circuits
    1. Introduction
    2. 19.1 Ohm's law
    3. 19.2 Series Circuits
    4. 19.3 Parallel Circuits
    5. 19.4 Electric Power
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  21. 20 Magnetism
    1. Introduction
    2. 20.1 Magnetic Fields, Field Lines, and Force
    3. 20.2 Motors, Generators, and Transformers
    4. 20.3 Electromagnetic Induction
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  22. 21 The Quantum Nature of Light
    1. Introduction
    2. 21.1 Planck and Quantum Nature of Light
    3. 21.2 Einstein and the Photoelectric Effect
    4. 21.3 The Dual Nature of Light
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  23. 22 The Atom
    1. Introduction
    2. 22.1 The Structure of the Atom
    3. 22.2 Nuclear Forces and Radioactivity
    4. 22.3 Half Life and Radiometric Dating
    5. 22.4 Nuclear Fission and Fusion
    6. 22.5 Medical Applications of Radioactivity: Diagnostic Imaging and Radiation
    7. Key Terms
    8. Section Summary
    9. Key Equations
    10. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Performance Task
    11. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  24. 23 Particle Physics
    1. Introduction
    2. 23.1 The Four Fundamental Forces
    3. 23.2 Quarks
    4. 23.3 The Unification of Forces
    5. Key Terms
    6. Section Summary
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  25. A | Reference Tables
  26. Index
The Aurora Borealis.
Figure 20.1 The magnificent spectacle of the Aurora Borealis, or northern lights, glows in the northern sky above Bear Lake near Eielson Air Force Base, Alaska. Shaped by Earth’s magnetic field, this light is produced by radiation spewed from solar storms. (credit: Senior Airman Joshua Strang, Flickr)

Teacher Support

Teacher Support

Ask students what they know about magnets. Discuss the two poles of magnets that either attract each other or repel each other. Point out that magnetic force acts at a distance, which is similar to the electrostatic force studied earlier.

Review electric dipoles and the electric field that they create. Emphasize that dipoles have two charges, or poles, and that these poles will repulse, or attract, the same, or opposite, pole of another dipole. Also discuss how electric dipoles orient themselves to be parallel to electric field lines.

You may have encountered magnets for the first time as a small child playing with magnetic toys or refrigerator magnets. At the time, you likely noticed that two magnets that repulse each other will attract each other if you flip one of them around. The force that acts across the air gaps between magnets is the same force that creates wonders such as the Aurora Borealis. In fact, magnetic effects pervade our lives in myriad ways, from electric motors to medical imaging and computer memory. In this chapter, we introduce magnets and learn how they work and how magnetic fields and electric currents interact.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-physics . Changes were made to the original material, including updates to art, structure, and other content updates.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
Citation information

© Jun 24, 2023 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.