Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Organic Chemistry

A | Nomenclature of Polyfunctional Organic Compounds

Organic ChemistryA | Nomenclature of Polyfunctional Organic Compounds

Table of contents
  1. Dedication and Preface
  2. 1 Structure and Bonding
    1. Why This Chapter?
    2. 1.1 Atomic Structure: The Nucleus
    3. 1.2 Atomic Structure: Orbitals
    4. 1.3 Atomic Structure: Electron Configurations
    5. 1.4 Development of Chemical Bonding Theory
    6. 1.5 Describing Chemical Bonds: Valence Bond Theory
    7. 1.6 sp3 Hybrid Orbitals and the Structure of Methane
    8. 1.7 sp3 Hybrid Orbitals and the Structure of Ethane
    9. 1.8 sp2 Hybrid Orbitals and the Structure of Ethylene
    10. 1.9 sp Hybrid Orbitals and the Structure of Acetylene
    11. 1.10 Hybridization of Nitrogen, Oxygen, Phosphorus, and Sulfur
    12. 1.11 Describing Chemical Bonds: Molecular Orbital Theory
    13. 1.12 Drawing Chemical Structures
    14. Chemistry Matters—Organic Foods: Risk versus Benefit
    15. Key Terms
    16. Summary
    17. Additional Problems
  3. 2 Polar Covalent Bonds; Acids and Bases
    1. Why This Chapter?
    2. 2.1 Polar Covalent Bonds and Electronegativity
    3. 2.2 Polar Covalent Bonds and Dipole Moments
    4. 2.3 Formal Charges
    5. 2.4 Resonance
    6. 2.5 Rules for Resonance Forms
    7. 2.6 Drawing Resonance Forms
    8. 2.7 Acids and Bases: The Brønsted–Lowry Definition
    9. 2.8 Acid and Base Strength
    10. 2.9 Predicting Acid–Base Reactions from pKa Values
    11. 2.10 Organic Acids and Organic Bases
    12. 2.11 Acids and Bases: The Lewis Definition
    13. 2.12 Noncovalent Interactions between Molecules
    14. Chemistry Matters—Alkaloids: From Cocaine to Dental Anesthetics
    15. Key Terms
    16. Summary
    17. Additional Problems
  4. 3 Organic Compounds: Alkanes and Their Stereochemistry
    1. Why This Chapter?
    2. 3.1 Functional Groups
    3. 3.2 Alkanes and Alkane Isomers
    4. 3.3 Alkyl Groups
    5. 3.4 Naming Alkanes
    6. 3.5 Properties of Alkanes
    7. 3.6 Conformations of Ethane
    8. 3.7 Conformations of Other Alkanes
    9. Chemistry Matters—Gasoline
    10. Key Terms
    11. Summary
    12. Additional Problems
  5. 4 Organic Compounds: Cycloalkanes and Their Stereochemistry
    1. Why This Chapter?
    2. 4.1 Naming Cycloalkanes
    3. 4.2 Cis–Trans Isomerism in Cycloalkanes
    4. 4.3 Stability of Cycloalkanes: Ring Strain
    5. 4.4 Conformations of Cycloalkanes
    6. 4.5 Conformations of Cyclohexane
    7. 4.6 Axial and Equatorial Bonds in Cyclohexane
    8. 4.7 Conformations of Monosubstituted Cyclohexanes
    9. 4.8 Conformations of Disubstituted Cyclohexanes
    10. 4.9 Conformations of Polycyclic Molecules
    11. Chemistry Matters—Molecular Mechanics
    12. Key Terms
    13. Summary
    14. Additional Problems
  6. 5 Stereochemistry at Tetrahedral Centers
    1. Why This Chapter?
    2. 5.1 Enantiomers and the Tetrahedral Carbon
    3. 5.2 The Reason for Handedness in Molecules: Chirality
    4. 5.3 Optical Activity
    5. 5.4 Pasteur’s Discovery of Enantiomers
    6. 5.5 Sequence Rules for Specifying Configuration
    7. 5.6 Diastereomers
    8. 5.7 Meso Compounds
    9. 5.8 Racemic Mixtures and the Resolution of Enantiomers
    10. 5.9 A Review of Isomerism
    11. 5.10 Chirality at Nitrogen, Phosphorus, and Sulfur
    12. 5.11 Prochirality
    13. 5.12 Chirality in Nature and Chiral Environments
    14. Chemistry Matters—Chiral Drugs
    15. Key Terms
    16. Summary
    17. Additional Problems
  7. 6 An Overview of Organic Reactions
    1. Why This Chapter?
    2. 6.1 Kinds of Organic Reactions
    3. 6.2 How Organic Reactions Occur: Mechanisms
    4. 6.3 Polar Reactions
    5. 6.4 An Example of a Polar Reaction: Addition of HBr to Ethylene
    6. 6.5 Using Curved Arrows in Polar Reaction Mechanisms
    7. 6.6 Radical Reactions
    8. 6.7 Describing a Reaction: Equilibria, Rates, and Energy Changes
    9. 6.8 Describing a Reaction: Bond Dissociation Energies
    10. 6.9 Describing a Reaction: Energy Diagrams and Transition States
    11. 6.10 Describing a Reaction: Intermediates
    12. 6.11 A Comparison Between Biological Reactions and Laboratory Reactions
    13. Chemistry Matters—Where Do Drugs Come From?
    14. Key Terms
    15. Summary
    16. Additional Problems
  8. 7 Alkenes: Structure and Reactivity
    1. Why This Chapter?
    2. 7.1 Industrial Preparation and Use of Alkenes
    3. 7.2 Calculating the Degree of Unsaturation
    4. 7.3 Naming Alkenes
    5. 7.4 Cis–Trans Isomerism in Alkenes
    6. 7.5 Alkene Stereochemistry and the E,Z Designation
    7. 7.6 Stability of Alkenes
    8. 7.7 Electrophilic Addition Reactions of Alkenes
    9. 7.8 Orientation of Electrophilic Additions: Markovnikov’s Rule
    10. 7.9 Carbocation Structure and Stability
    11. 7.10 The Hammond Postulate
    12. 7.11 Evidence for the Mechanism of Electrophilic Additions: Carbocation Rearrangements
    13. Chemistry Matters—Bioprospecting: Hunting for Natural Products
    14. Key Terms
    15. Summary
    16. Additional Problems
  9. 8 Alkenes: Reactions and Synthesis
    1. Why This Chapter?
    2. 8.1 Preparing Alkenes: A Preview of Elimination Reactions
    3. 8.2 Halogenation of Alkenes: Addition of X2
    4. 8.3 Halohydrins from Alkenes: Addition of HO-X
    5. 8.4 Hydration of Alkenes: Addition of H2O by Oxymercuration
    6. 8.5 Hydration of Alkenes: Addition of H2O by Hydroboration
    7. 8.6 Reduction of Alkenes: Hydrogenation
    8. 8.7 Oxidation of Alkenes: Epoxidation and Hydroxylation
    9. 8.8 Oxidation of Alkenes: Cleavage to Carbonyl Compounds
    10. 8.9 Addition of Carbenes to Alkenes: Cyclopropane Synthesis
    11. 8.10 Radical Additions to Alkenes: Chain-Growth Polymers
    12. 8.11 Biological Additions of Radicals to Alkenes
    13. 8.12 Reaction Stereochemistry: Addition of H2O to an Achiral Alkene
    14. 8.13 Reaction Stereochemistry: Addition of H2O to a Chiral Alkene
    15. Chemistry Matters—Terpenes: Naturally Occurring Alkenes
    16. Key Terms
    17. Summary
    18. Summary of Reactions
    19. Additional Problems
  10. 9 Alkynes: An Introduction to Organic Synthesis
    1. Why This Chapter?
    2. 9.1 Naming Alkynes
    3. 9.2 Preparation of Alkynes: Elimination Reactions of Dihalides
    4. 9.3 Reactions of Alkynes: Addition of HX and X2
    5. 9.4 Hydration of Alkynes
    6. 9.5 Reduction of Alkynes
    7. 9.6 Oxidative Cleavage of Alkynes
    8. 9.7 Alkyne Acidity: Formation of Acetylide Anions
    9. 9.8 Alkylation of Acetylide Anions
    10. 9.9 An Introduction to Organic Synthesis
    11. Chemistry Matters—The Art of Organic Synthesis
    12. Key Terms
    13. Summary
    14. Summary of Reactions
    15. Additional Problems
  11. 10 Organohalides
    1. Why This Chapter?
    2. 10.1 Names and Structures of Alkyl Halides
    3. 10.2 Preparing Alkyl Halides from Alkanes: Radical Halogenation
    4. 10.3 Preparing Alkyl Halides from Alkenes: Allylic Bromination
    5. 10.4 Stability of the Allyl Radical: Resonance Revisited
    6. 10.5 Preparing Alkyl Halides from Alcohols
    7. 10.6 Reactions of Alkyl Halides: Grignard Reagents
    8. 10.7 Organometallic Coupling Reactions
    9. 10.8 Oxidation and Reduction in Organic Chemistry
    10. Chemistry Matters—Naturally Occurring Organohalides
    11. Key Terms
    12. Summary
    13. Summary of Reactions
    14. Additional Problems
  12. 11 Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations
    1. Why This Chapter?
    2. 11.1 The Discovery of Nucleophilic Substitution Reactions
    3. 11.2 The SN2 Reaction
    4. 11.3 Characteristics of the SN2 Reaction
    5. 11.4 The SN1 Reaction
    6. 11.5 Characteristics of the SN1 Reaction
    7. 11.6 Biological Substitution Reactions
    8. 11.7 Elimination Reactions: Zaitsev’s Rule
    9. 11.8 The E2 Reaction and the Deuterium Isotope Effect
    10. 11.9 The E2 Reaction and Cyclohexane Conformation
    11. 11.10 The E1 and E1cB Reactions
    12. 11.11 Biological Elimination Reactions
    13. 11.12 A Summary of Reactivity: SN1, SN2, E1, E1cB, and E2
    14. Chemistry Matters—Green Chemistry
    15. Key Terms
    16. Summary
    17. Summary of Reactions
    18. Additional Problems
  13. 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy
    1. Why This Chapter?
    2. 12.1 Mass Spectrometry of Small Molecules: Magnetic-Sector Instruments
    3. 12.2 Interpreting Mass Spectra
    4. 12.3 Mass Spectrometry of Some Common Functional Groups
    5. 12.4 Mass Spectrometry in Biological Chemistry: Time-of-Flight (TOF) Instruments
    6. 12.5 Spectroscopy and the Electromagnetic Spectrum
    7. 12.6 Infrared Spectroscopy
    8. 12.7 Interpreting Infrared Spectra
    9. 12.8 Infrared Spectra of Some Common Functional Groups
    10. Chemistry Matters—X-Ray Crystallography
    11. Key Terms
    12. Summary
    13. Additional Problems
  14. 13 Structure Determination: Nuclear Magnetic Resonance Spectroscopy
    1. Why This Chapter?
    2. 13.1 Nuclear Magnetic Resonance Spectroscopy
    3. 13.2 The Nature of NMR Absorptions
    4. 13.3 Chemical Shifts
    5. 13.4 Chemical Shifts in 1H NMR Spectroscopy
    6. 13.5 Integration of 1H NMR Absorptions: Proton Counting
    7. 13.6 Spin–Spin Splitting in 1H NMR Spectra
    8. 13.7 1H NMR Spectroscopy and Proton Equivalence
    9. 13.8 More Complex Spin–Spin Splitting Patterns
    10. 13.9 Uses of 1H NMR Spectroscopy
    11. 13.10 13C NMR Spectroscopy: Signal Averaging and FT–NMR
    12. 13.11 Characteristics of 13C NMR Spectroscopy
    13. 13.12 DEPT 13C NMR Spectroscopy
    14. 13.13 Uses of 13C NMR Spectroscopy
    15. Chemistry Matters—Magnetic Resonance Imaging (MRI)
    16. Key Terms
    17. Summary
    18. Additional Problems
  15. 14 Conjugated Compounds and Ultraviolet Spectroscopy
    1. Why This Chapter?
    2. 14.1 Stability of Conjugated Dienes: Molecular Orbital Theory
    3. 14.2 Electrophilic Additions to Conjugated Dienes: Allylic Carbocations
    4. 14.3 Kinetic versus Thermodynamic Control of Reactions
    5. 14.4 The Diels–Alder Cycloaddition Reaction
    6. 14.5 Characteristics of the Diels–Alder Reaction
    7. 14.6 Diene Polymers: Natural and Synthetic Rubbers
    8. 14.7 Ultraviolet Spectroscopy
    9. 14.8 Interpreting Ultraviolet Spectra: The Effect of Conjugation
    10. 14.9 Conjugation, Color, and the Chemistry of Vision
    11. Chemistry Matters—Photolithography
    12. Key Terms
    13. Summary
    14. Summary of Reactions
    15. Additional Problems
  16. 15 Benzene and Aromaticity
    1. Why This Chapter?
    2. 15.1 Naming Aromatic Compounds
    3. 15.2 Structure and Stability of Benzene
    4. 15.3 Aromaticity and the Hückel 4n + 2 Rule
    5. 15.4 Aromatic Ions
    6. 15.5 Aromatic Heterocycles: Pyridine and Pyrrole
    7. 15.6 Polycyclic Aromatic Compounds
    8. 15.7 Spectroscopy of Aromatic Compounds
    9. Chemistry Matters—Aspirin, NSAIDs, and COX-2 Inhibitors
    10. Key Terms
    11. Summary
    12. Additional Problems
  17. 16 Chemistry of Benzene: Electrophilic Aromatic Substitution
    1. Why This Chapter?
    2. 16.1 Electrophilic Aromatic Substitution Reactions: Bromination
    3. 16.2 Other Aromatic Substitutions
    4. 16.3 Alkylation and Acylation of Aromatic Rings: The Friedel–Crafts Reaction
    5. 16.4 Substituent Effects in Electrophilic Substitutions
    6. 16.5 Trisubstituted Benzenes: Additivity of Effects
    7. 16.6 Nucleophilic Aromatic Substitution
    8. 16.7 Benzyne
    9. 16.8 Oxidation of Aromatic Compounds
    10. 16.9 Reduction of Aromatic Compounds
    11. 16.10 Synthesis of Polysubstituted Benzenes
    12. Chemistry Matters—Combinatorial Chemistry
    13. Key Terms
    14. Summary
    15. Summary of Reactions
    16. Additional Problems
  18. 17 Alcohols and Phenols
    1. Why This Chapter?
    2. 17.1 Naming Alcohols and Phenols
    3. 17.2 Properties of Alcohols and Phenols
    4. 17.3 Preparation of Alcohols: A Review
    5. 17.4 Alcohols from Carbonyl Compounds: Reduction
    6. 17.5 Alcohols from Carbonyl Compounds: Grignard Reaction
    7. 17.6 Reactions of Alcohols
    8. 17.7 Oxidation of Alcohols
    9. 17.8 Protection of Alcohols
    10. 17.9 Phenols and Their Uses
    11. 17.10 Reactions of Phenols
    12. 17.11 Spectroscopy of Alcohols and Phenols
    13. Chemistry Matters—Ethanol: Chemical, Drug, and Poison
    14. Key Terms
    15. Summary
    16. Summary of Reactions
    17. Additional Problems
  19. 18 Ethers and Epoxides; Thiols and Sulfides
    1. Why This Chapter?
    2. 18.1 Names and Properties of Ethers
    3. 18.2 Preparing Ethers
    4. 18.3 Reactions of Ethers: Acidic Cleavage
    5. 18.4 Cyclic Ethers: Epoxides
    6. 18.5 Reactions of Epoxides: Ring-Opening
    7. 18.6 Crown Ethers
    8. 18.7 Thiols and Sulfides
    9. 18.8 Spectroscopy of Ethers
    10. Chemistry Matters—Epoxy Resins and Adhesives
    11. Key Terms
    12. Summary
    13. Summary of Reactions
    14. Additional Problems
    15. Preview of Carbonyl Chemistry
  20. 19 Aldehydes and Ketones: Nucleophilic Addition Reactions
    1. Why This Chapter?
    2. 19.1 Naming Aldehydes and Ketones
    3. 19.2 Preparing Aldehydes and Ketones
    4. 19.3 Oxidation of Aldehydes and Ketones
    5. 19.4 Nucleophilic Addition Reactions of Aldehydes and Ketones
    6. 19.5 Nucleophilic Addition of H2O: Hydration
    7. 19.6 Nucleophilic Addition of HCN: Cyanohydrin Formation
    8. 19.7 Nucleophilic Addition of Hydride and Grignard Reagents: Alcohol Formation
    9. 19.8 Nucleophilic Addition of Amines: Imine and Enamine Formation
    10. 19.9 Nucleophilic Addition of Hydrazine: The Wolff–Kishner Reaction
    11. 19.10 Nucleophilic Addition of Alcohols: Acetal Formation
    12. 19.11 Nucleophilic Addition of Phosphorus Ylides: The Wittig Reaction
    13. 19.12 Biological Reductions
    14. 19.13 Conjugate Nucleophilic Addition to α,β‑Unsaturated Aldehydes and Ketones
    15. 19.14 Spectroscopy of Aldehydes and Ketones
    16. Chemistry Matters—Enantioselective Synthesis
    17. Key Terms
    18. Summary
    19. Summary of Reactions
    20. Additional Problems
  21. 20 Carboxylic Acids and Nitriles
    1. Why This Chapter?
    2. 20.1 Naming Carboxylic Acids and Nitriles
    3. 20.2 Structure and Properties of Carboxylic Acids
    4. 20.3 Biological Acids and the Henderson–Hasselbalch Equation
    5. 20.4 Substituent Effects on Acidity
    6. 20.5 Preparing Carboxylic Acids
    7. 20.6 Reactions of Carboxylic Acids: An Overview
    8. 20.7 Chemistry of Nitriles
    9. 20.8 Spectroscopy of Carboxylic Acids and Nitriles
    10. Chemistry Matters—Vitamin C
    11. Key Terms
    12. Summary
    13. Summary of Reactions
    14. Additional Problems
  22. 21 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions
    1. Why This Chapter?
    2. 21.1 Naming Carboxylic Acid Derivatives
    3. 21.2 Nucleophilic Acyl Substitution Reactions
    4. 21.3 Reactions of Carboxylic Acids
    5. 21.4 Chemistry of Acid Halides
    6. 21.5 Chemistry of Acid Anhydrides
    7. 21.6 Chemistry of Esters
    8. 21.7 Chemistry of Amides
    9. 21.8 Chemistry of Thioesters and Acyl Phosphates: Biological Carboxylic Acid Derivatives
    10. 21.9 Polyamides and Polyesters: Step-Growth Polymers
    11. 21.10 Spectroscopy of Carboxylic Acid Derivatives
    12. Chemistry Matters—β-Lactam Antibiotics
    13. Key Terms
    14. Summary
    15. Summary of Reactions
    16. Additional Problems
  23. 22 Carbonyl Alpha-Substitution Reactions
    1. Why This Chapter?
    2. 22.1 Keto–Enol Tautomerism
    3. 22.2 Reactivity of Enols: α-Substitution Reactions
    4. 22.3 Alpha Halogenation of Aldehydes and Ketones
    5. 22.4 Alpha Bromination of Carboxylic Acids
    6. 22.5 Acidity of Alpha Hydrogen Atoms: Enolate Ion Formation
    7. 22.6 Reactivity of Enolate Ions
    8. 22.7 Alkylation of Enolate Ions
    9. Chemistry Matters—Barbiturates
    10. Key Terms
    11. Summary
    12. Summary of Reactions
    13. Additional Problems
  24. 23 Carbonyl Condensation Reactions
    1. Why This Chapter?
    2. 23.1 Carbonyl Condensations: The Aldol Reaction
    3. 23.2 Carbonyl Condensations versus Alpha Substitutions
    4. 23.3 Dehydration of Aldol Products: Synthesis of Enones
    5. 23.4 Using Aldol Reactions in Synthesis
    6. 23.5 Mixed Aldol Reactions
    7. 23.6 Intramolecular Aldol Reactions
    8. 23.7 The Claisen Condensation Reaction
    9. 23.8 Mixed Claisen Condensations
    10. 23.9 Intramolecular Claisen Condensations: The Dieckmann Cyclization
    11. 23.10 Conjugate Carbonyl Additions: The Michael Reaction
    12. 23.11 Carbonyl Condensations with Enamines: The Stork Enamine Reaction
    13. 23.12 The Robinson Annulation Reaction
    14. 23.13 Some Biological Carbonyl Condensation Reactions
    15. Chemistry Matters—A Prologue to Metabolism
    16. Key Terms
    17. Summary
    18. Summary of Reactions
    19. Additional Problems
  25. 24 Amines and Heterocycles
    1. Why This Chapter?
    2. 24.1 Naming Amines
    3. 24.2 Structure and Properties of Amines
    4. 24.3 Basicity of Amines
    5. 24.4 Basicity of Arylamines
    6. 24.5 Biological Amines and the Henderson–Hasselbalch Equation
    7. 24.6 Synthesis of Amines
    8. 24.7 Reactions of Amines
    9. 24.8 Reactions of Arylamines
    10. 24.9 Heterocyclic Amines
    11. 24.10 Spectroscopy of Amines
    12. Chemistry Matters—Green Chemistry II: Ionic Liquids
    13. Key Terms
    14. Summary
    15. Summary of Reactions
    16. Additional Problems
  26. 25 Biomolecules: Carbohydrates
    1. Why This Chapter?
    2. 25.1 Classification of Carbohydrates
    3. 25.2 Representing Carbohydrate Stereochemistry: Fischer Projections
    4. 25.3 D,L Sugars
    5. 25.4 Configurations of the Aldoses
    6. 25.5 Cyclic Structures of Monosaccharides: Anomers
    7. 25.6 Reactions of Monosaccharides
    8. 25.7 The Eight Essential Monosaccharides
    9. 25.8 Disaccharides
    10. 25.9 Polysaccharides and Their Synthesis
    11. 25.10 Some Other Important Carbohydrates
    12. Chemistry Matters—Sweetness
    13. Key Terms
    14. Summary
    15. Summary of Reactions
    16. Additional Problems
  27. 26 Biomolecules: Amino Acids, Peptides, and Proteins
    1. Why This Chapter?
    2. 26.1 Structures of Amino Acids
    3. 26.2 Amino Acids and the Henderson–Hasselbalch Equation: Isoelectric Points
    4. 26.3 Synthesis of Amino Acids
    5. 26.4 Peptides and Proteins
    6. 26.5 Amino Acid Analysis of Peptides
    7. 26.6 Peptide Sequencing: The Edman Degradation
    8. 26.7 Peptide Synthesis
    9. 26.8 Automated Peptide Synthesis: The Merrifield Solid-Phase Method
    10. 26.9 Protein Structure
    11. 26.10 Enzymes and Coenzymes
    12. 26.11 How Do Enzymes Work? Citrate Synthase
    13. Chemistry Matters—The Protein Data Bank
    14. Key Terms
    15. Summary
    16. Summary of Reactions
    17. Additional Problems
  28. 27 Biomolecules: Lipids
    1. Why This Chapter?
    2. 27.1 Waxes, Fats, and Oils
    3. 27.2 Soap
    4. 27.3 Phospholipids
    5. 27.4 Prostaglandins and Other Eicosanoids
    6. 27.5 Terpenoids
    7. 27.6 Steroids
    8. 27.7 Biosynthesis of Steroids
    9. Chemistry Matters—Saturated Fats, Cholesterol, and Heart Disease
    10. Key Terms
    11. Summary
    12. Additional Problems
  29. 28 Biomolecules: Nucleic Acids
    1. Why This Chapter?
    2. 28.1 Nucleotides and Nucleic Acids
    3. 28.2 Base Pairing in DNA
    4. 28.3 Replication of DNA
    5. 28.4 Transcription of DNA
    6. 28.5 Translation of RNA: Protein Biosynthesis
    7. 28.6 DNA Sequencing
    8. 28.7 DNA Synthesis
    9. 28.8 The Polymerase Chain Reaction
    10. Chemistry Matters—DNA Fingerprinting
    11. Key Terms
    12. Summary
    13. Additional Problems
  30. 29 The Organic Chemistry of Metabolic Pathways
    1. Why This Chapter?
    2. 29.1 An Overview of Metabolism and Biochemical Energy
    3. 29.2 Catabolism of Triacylglycerols: The Fate of Glycerol
    4. 29.3 Catabolism of Triacylglycerols: β-Oxidation
    5. 29.4 Biosynthesis of Fatty Acids
    6. 29.5 Catabolism of Carbohydrates: Glycolysis
    7. 29.6 Conversion of Pyruvate to Acetyl CoA
    8. 29.7 The Citric Acid Cycle
    9. 29.8 Carbohydrate Biosynthesis: Gluconeogenesis
    10. 29.9 Catabolism of Proteins: Deamination
    11. 29.10 Some Conclusions about Biological Chemistry
    12. Chemistry Matters—Statin Drugs
    13. Key Terms
    14. Summary
    15. Additional Problems
  31. 30 Orbitals and Organic Chemistry: Pericyclic Reactions
    1. Why This Chapter?
    2. 30.1 Molecular Orbitals of Conjugated Pi Systems
    3. 30.2 Electrocyclic Reactions
    4. 30.3 Stereochemistry of Thermal Electrocyclic Reactions
    5. 30.4 Photochemical Electrocyclic Reactions
    6. 30.5 Cycloaddition Reactions
    7. 30.6 Stereochemistry of Cycloadditions
    8. 30.7 Sigmatropic Rearrangements
    9. 30.8 Some Examples of Sigmatropic Rearrangements
    10. 30.9 A Summary of Rules for Pericyclic Reactions
    11. Chemistry Matters—Vitamin D, the Sunshine Vitamin
    12. Key Terms
    13. Summary
    14. Additional Problems
  32. 31 Synthetic Polymers
    1. Why This Chapter?
    2. 31.1 Chain-Growth Polymers
    3. 31.2 Stereochemistry of Polymerization: Ziegler–Natta Catalysts
    4. 31.3 Copolymers
    5. 31.4 Step-Growth Polymers
    6. 31.5 Olefin Metathesis Polymerization
    7. 31.6 Intramolecular Olefin Metathesis
    8. 31.7 Polymer Structure and Physical Properties
    9. Chemistry Matters—Degradable Polymers
    10. Key Terms
    11. Summary
    12. Additional Problems
  33. A | Nomenclature of Polyfunctional Organic Compounds
  34. B | Acidity Constants for Some Organic Compounds
  35. C | Glossary
  36. D | Periodic Table
  37. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
    22. Chapter 22
    23. Chapter 23
    24. Chapter 24
    25. Chapter 25
    26. Chapter 26
    27. Chapter 27
    28. Chapter 28
    29. Chapter 29
    30. Chapter 30
    31. Chapter 31
  38. Index

A • Nomenclature of Polyfunctional Organic Compounds

A • Nomenclature of Polyfunctional Organic Compounds

With more than 40 million organic compounds now known and thousands more being created daily, naming them all is a real problem. Part of the problem is due to the sheer complexity of organic structures, but part is also due to the fact that chemical names have more than one purpose. For the Chemical Abstracts Service (CAS), which catalogs and indexes the worldwide chemical literature, each compound must have only one correct name. It would be chaos if half the entries for CH3Br were indexed under “M” for methyl bromide and half under “B” for bromomethane. Furthermore, a CAS name must be strictly systematic so that it can be assigned and interpreted by computers; common names are not allowed.

People, however, have different requirements than computers. For people—which is to say students and professional chemists in their spoken and written communications—it’s best that a chemical name be pronounceable and as easy as possible to assign and interpret. Furthermore, it’s convenient if names follow historical precedents, even if that means a particularly well-known compound might have more than one name. People can readily understand that bromomethane and methyl bromide both refer to CH3Br.

As noted in the text, chemists overwhelmingly use the nomenclature system devised and maintained by the International Union of Pure and Applied Chemistry, or IUPAC. Rules for naming monofunctional compounds were given throughout the text as each new functional group was introduced, and a list of where these rules can be found is given in Table A1.

Table A1 Nomenclature Rules for Functional Groups
Functional group Text section
Acid anhydrides 21-1
Acid halides 21-1
Acyl phosphates 21-1
Alcohols 17-1
Aldehydes 19-1
Alkanes  3-4
Alkenes  7-3
Alkyl halides 10-1
Alkynes  9-1
Amides 21-1
Amines 24-1
Aromatic compounds 15-1
Carboxylic acids 20-1
Cycloalkanes  4-1
Esters 21-1
Ethers 18-1
Ketones 19-1
Nitriles 20-1
Phenols 17-1
Sulfides 18-7
Thiols 18-7
Thioesters 21-1

Naming a monofunctional compound is reasonably straightforward, but even experienced chemists often encounter problems when faced with naming a complex polyfunctional compound. Take the following compound, for instance. It has three functional groups, ester, ketone, and CCCC, but how should it be named? As an ester with an -oate ending, a ketone with an -one ending, or an alkene with an -ene ending? It’s actually named methyl 3-(2-oxo-6-cyclohexenyl)propanoate.

The structure of methyl 3-(2-oxo-6-cyclohexenyl)propanoate. Three functional groups, ketone, double bond, and ester are labeled.

The name of a polyfunctional organic molecule has four parts—suffix, parent, prefixes, and locants—which must be identified and expressed in the proper order and format. Let’s look at each of the four.

Name Part 1. The Suffix: Functional-Group Precedence

Although a polyfunctional organic molecule might contain several different functional groups, we must choose just one suffix for nomenclature purposes. It’s not correct to use two suffixes. Thus, keto ester 1 must be named either as a ketone with an -one suffix or as an ester with an -oate suffix, but it can’t be named as an -onoate. Similarly, amino alcohol 2 must be named either as an alcohol (-ol) or as an amine (-amine), but it can’t be named as an -olamine or -aminol.

Two structures: Five-carbon chain in which second from left has oxo group and fifth is methyl ester. Five-carbon chain with hydroxyl on second carbon from left and amino on fifth.

The only exception to the rule requiring a single suffix is when naming compounds that have double or triple bonds. Thus, the unsaturated acid H2CCHCH2CO2HH2CCHCH2CO2H is 3-butenoic acid, and the acetylenic alcohol HCCCH2CH2CH2OHHCCCH2CH2CH2OH is 5-pentyn-1-ol.

How do we choose which suffix to use? Functional groups are divided into two classes, principal groups and subordinate groups, as shown in Table A2. Principal groups can be cited either as prefixes or as suffixes, while subordinate groups are cited only as prefixes. Within the principal groups, an order of priority has been established: the proper suffix for a given compound is determined by choosing the principal group of highest priority. For example, Table A2 indicates that keto ester 1 should be named as an ester rather than as a ketone because an ester functional group is higher in priority than a ketone. Similarly, amino alcohol 2 should be named as an alcohol rather than as an amine. Thus, the name for 1 is methyl 4-oxopentanoate and the name for 2 is 5-amino-2-pentanol. Further examples are shown:

Table A2 Classification of Functional Groups a
Functional group Name as suffix Name as prefix
Principal groups
 Carboxylic acids -oic acid carboxy
-carboxylic acid
 Acid anhydrides -oic anhydride
-carboxylic anhydride
 Esters -oate alkoxycarbonyl
-carboxylate
 Thioesters -thioate alkylthiocarbonyl
-carbothioate
 Acid halides -oyl halide halocarbonyl
-carbonyl halide
 Amides -amide carbamoyl
-carboxamide
 Nitriles -nitrile cyano
-carbonitrile
 Aldehydes -al oxo
-carbaldehyde
 Ketones -one oxo
 Alcohols -ol hydroxy
 Phenols -ol hydroxy
 Thiols -thiol mercapto
 Amines -amine amino
 Imines -imine imino
 Ethers ether alkoxy
 Sulfides sulfide alkylthio
 Disulfides disulfide
 Alkenes -ene
 Alkynes -yne
 Alkanes -ane
Subordinate groups
 Azides azido
 Halides halo
 Nitro compounds nitro

aPrincipal groups are listed in order of decreasing priority; subordinate groups have no priority order.

The structures of five compounds named methyl 4-oxopentanoate, 5-amino-2-pentanol, methyl 5-methyl-6-oxohexanoate, 5-carbamoyl-4-hydroxypentanoic acid, and 3-oxocyclohexanecarbaldehyde.

Name Part 2. The Parent: Selecting the Main Chain or Ring

The parent, or base, name of a polyfunctional organic compound is usually easy to identify. If the principal group of highest priority is part of an open chain, the parent name is that of the longest chain containing the largest number of principal groups. For example, compounds 6 and 7 are isomeric aldehydo amides, which must be named as amides rather than as aldehydes according to Table A2. The longest chain in compound 6 has six carbons, and the substance is named 5-methyl-6-oxohexanamide. Compound 7 also has a chain of six carbons, but the longest chain that contains both principal functional groups has only four carbons. Thus, compound 7 is named 4-oxo-3-propylbutanamide.

The structure of two compounds named 5-methyl-6-oxohexanamide and 4-oxo-3-propylbutanamide. Both structures have an amide group constituting C 1 position.

If the highest-priority principal group is attached to a ring, the parent name is that of the ring system. Compounds 8 and 9, for instance, are isomeric keto nitriles and must both be named as nitriles according to Table A2. Substance 8 is named as a benzonitrile because the  −CN functional group is a substituent on the aromatic ring, but substance 9 is named as an acetonitrile because the  −CN functional group is on an open chain. Thus, their names are 2-acetyl-(4-bromomethyl)benzonitrile (8) and (2-acetyl-4-bromophenyl)acetonitrile (9). As further examples, compounds 10 and 11 are both keto acids and must be named as acids, but the parent name in 10 is that of a ring system (cyclohexanecarboxylic acid) and the parent name in 11 is that of an open chain (propanoic acid). Thus, their names are trans-2-(3-oxopropyl)cyclohexanecarboxylic acid (10) and 3-(2-oxocyclohexyl)propanoic acid (11).

The structures of four compounds named 2-acetyl-(4-bromomethyl)benzonitrile, (2-acetyl-4-bromophenyl)acetonitrile, trans-2-(3-oxopropyl)cyclohexanecarboxylic acid, and 3-(2-oxocyclohexyl)propanoic acid.

Name Parts 3 and 4. The Prefixes and Locants

With the parent name and the suffix established, the next step is to identify and give numbers, or locants, to all substituents on the parent chain or ring. The substituents include all alkyl groups and all functional groups other than the one cited in the suffix. For example, compound 12 contains three different functional groups (carboxyl, keto, and double bond). Because the carboxyl group is highest in priority and the longest chain containing the functional groups has seven carbons, compound 12 is a heptenoic acid. In addition, the parent chain has a keto (oxo) substituent and three methyl groups. Numbering from the end nearer the highest-priority functional group gives the name (E)-2,5,5-trimethyl-4-oxo-2-heptenoic acid. Look back at some of the other compounds we’ve named to see other examples of how prefixes and locants are assigned.

(E)-2,5,5-trimethyl-4-oxo-2-heptenoic acid has 7-carbon chain with double bond, methyl group at C 2, oxo at C 4, and two methyl groups at C 5. C 1 is carboxylic acid group.

Writing the Name

With the name parts established, the entire name can be written out. Several additional rules apply:

  1. Order of prefixes. When the substituents have been identified, the parent chain has been numbered, and the proper multipliers such as di- and tri- have been assigned, the name is written with the substituents listed in alphabetical, rather than numerical, order. Multipliers such as di- and tri- are not used for alphabetization, but the italicized prefixes iso- and sec- are used.
    5-Amino-3-methyl-2-pentanol has a 5-carbon chain. C 1, C 3, and C 4 are bonded to an amino group, a methyl group, and a hydroxyl group, respectively.
  2. Use of hyphens; single- and multiple-word names. The general rule is to determine whether the parent is itself an element or compound. If it is, then the name is written as a single word; if it isn’t, then the name is written as multiple words. Methylbenzene is written as one word, for instance, because the parent—benzene—is a compound. Diethyl ether, however, is written as two words because the parent—ether—is a class name rather than a compound name. Some further examples follow:
    The structures of four compounds named dimethylmagnesium, isopropyl 3-hydroxypropanoate, 4-(dimethylamino)pyridine, and methyl cyclopentanecarbothioate.
  3. Parentheses. Parentheses are used to denote complex substituents when ambiguity would otherwise arise. For example, chloromethylbenzene has two substituents on a benzene ring, but (chloromethyl)benzene has only one complex substituent. Note that the expression in parentheses is not set off by hyphens from the rest of the name.
    The structures of three compounds named p-chloromethylbenzene, (chloromethyl)benzene, and 2-(1-methylpropyl)pentanedioic acid.

Additional Reading

Further explanations of the rules of organic nomenclature can be found online at ACD Labs (accessed May 2023) and in the following references:

  1. “A Guide to IUPAC Nomenclature of Organic Compounds,” CRC Press, Boca Raton, FL, 1993.
  2. “Nomenclature of Organic Chemistry, Sections A, B, C, D, E, F, and H,” International Union of Pure and Applied Chemistry, Pergamon Press, Oxford, 1979.
Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
Citation information

© Sep 25, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.