Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Organic Chemistry

11.3 Characteristics of the SN2 Reaction

Organic Chemistry11.3 Characteristics of the SN2 Reaction

Table of contents
  1. Dedication and Preface
  2. 1 Structure and Bonding
    1. Why This Chapter?
    2. 1.1 Atomic Structure: The Nucleus
    3. 1.2 Atomic Structure: Orbitals
    4. 1.3 Atomic Structure: Electron Configurations
    5. 1.4 Development of Chemical Bonding Theory
    6. 1.5 Describing Chemical Bonds: Valence Bond Theory
    7. 1.6 sp3 Hybrid Orbitals and the Structure of Methane
    8. 1.7 sp3 Hybrid Orbitals and the Structure of Ethane
    9. 1.8 sp2 Hybrid Orbitals and the Structure of Ethylene
    10. 1.9 sp Hybrid Orbitals and the Structure of Acetylene
    11. 1.10 Hybridization of Nitrogen, Oxygen, Phosphorus, and Sulfur
    12. 1.11 Describing Chemical Bonds: Molecular Orbital Theory
    13. 1.12 Drawing Chemical Structures
    14. Chemistry Matters—Organic Foods: Risk versus Benefit
    15. Key Terms
    16. Summary
    17. Additional Problems
  3. 2 Polar Covalent Bonds; Acids and Bases
    1. Why This Chapter?
    2. 2.1 Polar Covalent Bonds and Electronegativity
    3. 2.2 Polar Covalent Bonds and Dipole Moments
    4. 2.3 Formal Charges
    5. 2.4 Resonance
    6. 2.5 Rules for Resonance Forms
    7. 2.6 Drawing Resonance Forms
    8. 2.7 Acids and Bases: The Brønsted–Lowry Definition
    9. 2.8 Acid and Base Strength
    10. 2.9 Predicting Acid–Base Reactions from pKa Values
    11. 2.10 Organic Acids and Organic Bases
    12. 2.11 Acids and Bases: The Lewis Definition
    13. 2.12 Noncovalent Interactions between Molecules
    14. Chemistry Matters—Alkaloids: From Cocaine to Dental Anesthetics
    15. Key Terms
    16. Summary
    17. Additional Problems
  4. 3 Organic Compounds: Alkanes and Their Stereochemistry
    1. Why This Chapter?
    2. 3.1 Functional Groups
    3. 3.2 Alkanes and Alkane Isomers
    4. 3.3 Alkyl Groups
    5. 3.4 Naming Alkanes
    6. 3.5 Properties of Alkanes
    7. 3.6 Conformations of Ethane
    8. 3.7 Conformations of Other Alkanes
    9. Chemistry Matters—Gasoline
    10. Key Terms
    11. Summary
    12. Additional Problems
  5. 4 Organic Compounds: Cycloalkanes and Their Stereochemistry
    1. Why This Chapter?
    2. 4.1 Naming Cycloalkanes
    3. 4.2 Cis–Trans Isomerism in Cycloalkanes
    4. 4.3 Stability of Cycloalkanes: Ring Strain
    5. 4.4 Conformations of Cycloalkanes
    6. 4.5 Conformations of Cyclohexane
    7. 4.6 Axial and Equatorial Bonds in Cyclohexane
    8. 4.7 Conformations of Monosubstituted Cyclohexanes
    9. 4.8 Conformations of Disubstituted Cyclohexanes
    10. 4.9 Conformations of Polycyclic Molecules
    11. Chemistry Matters—Molecular Mechanics
    12. Key Terms
    13. Summary
    14. Additional Problems
  6. 5 Stereochemistry at Tetrahedral Centers
    1. Why This Chapter?
    2. 5.1 Enantiomers and the Tetrahedral Carbon
    3. 5.2 The Reason for Handedness in Molecules: Chirality
    4. 5.3 Optical Activity
    5. 5.4 Pasteur’s Discovery of Enantiomers
    6. 5.5 Sequence Rules for Specifying Configuration
    7. 5.6 Diastereomers
    8. 5.7 Meso Compounds
    9. 5.8 Racemic Mixtures and the Resolution of Enantiomers
    10. 5.9 A Review of Isomerism
    11. 5.10 Chirality at Nitrogen, Phosphorus, and Sulfur
    12. 5.11 Prochirality
    13. 5.12 Chirality in Nature and Chiral Environments
    14. Chemistry Matters—Chiral Drugs
    15. Key Terms
    16. Summary
    17. Additional Problems
  7. 6 An Overview of Organic Reactions
    1. Why This Chapter?
    2. 6.1 Kinds of Organic Reactions
    3. 6.2 How Organic Reactions Occur: Mechanisms
    4. 6.3 Polar Reactions
    5. 6.4 An Example of a Polar Reaction: Addition of HBr to Ethylene
    6. 6.5 Using Curved Arrows in Polar Reaction Mechanisms
    7. 6.6 Radical Reactions
    8. 6.7 Describing a Reaction: Equilibria, Rates, and Energy Changes
    9. 6.8 Describing a Reaction: Bond Dissociation Energies
    10. 6.9 Describing a Reaction: Energy Diagrams and Transition States
    11. 6.10 Describing a Reaction: Intermediates
    12. 6.11 A Comparison Between Biological Reactions and Laboratory Reactions
    13. Chemistry Matters—Where Do Drugs Come From?
    14. Key Terms
    15. Summary
    16. Additional Problems
  8. 7 Alkenes: Structure and Reactivity
    1. Why This Chapter?
    2. 7.1 Industrial Preparation and Use of Alkenes
    3. 7.2 Calculating the Degree of Unsaturation
    4. 7.3 Naming Alkenes
    5. 7.4 Cis–Trans Isomerism in Alkenes
    6. 7.5 Alkene Stereochemistry and the E,Z Designation
    7. 7.6 Stability of Alkenes
    8. 7.7 Electrophilic Addition Reactions of Alkenes
    9. 7.8 Orientation of Electrophilic Additions: Markovnikov’s Rule
    10. 7.9 Carbocation Structure and Stability
    11. 7.10 The Hammond Postulate
    12. 7.11 Evidence for the Mechanism of Electrophilic Additions: Carbocation Rearrangements
    13. Chemistry Matters—Bioprospecting: Hunting for Natural Products
    14. Key Terms
    15. Summary
    16. Additional Problems
  9. 8 Alkenes: Reactions and Synthesis
    1. Why This Chapter?
    2. 8.1 Preparing Alkenes: A Preview of Elimination Reactions
    3. 8.2 Halogenation of Alkenes: Addition of X2
    4. 8.3 Halohydrins from Alkenes: Addition of HO-X
    5. 8.4 Hydration of Alkenes: Addition of H2O by Oxymercuration
    6. 8.5 Hydration of Alkenes: Addition of H2O by Hydroboration
    7. 8.6 Reduction of Alkenes: Hydrogenation
    8. 8.7 Oxidation of Alkenes: Epoxidation and Hydroxylation
    9. 8.8 Oxidation of Alkenes: Cleavage to Carbonyl Compounds
    10. 8.9 Addition of Carbenes to Alkenes: Cyclopropane Synthesis
    11. 8.10 Radical Additions to Alkenes: Chain-Growth Polymers
    12. 8.11 Biological Additions of Radicals to Alkenes
    13. 8.12 Reaction Stereochemistry: Addition of H2O to an Achiral Alkene
    14. 8.13 Reaction Stereochemistry: Addition of H2O to a Chiral Alkene
    15. Chemistry Matters—Terpenes: Naturally Occurring Alkenes
    16. Key Terms
    17. Summary
    18. Summary of Reactions
    19. Additional Problems
  10. 9 Alkynes: An Introduction to Organic Synthesis
    1. Why This Chapter?
    2. 9.1 Naming Alkynes
    3. 9.2 Preparation of Alkynes: Elimination Reactions of Dihalides
    4. 9.3 Reactions of Alkynes: Addition of HX and X2
    5. 9.4 Hydration of Alkynes
    6. 9.5 Reduction of Alkynes
    7. 9.6 Oxidative Cleavage of Alkynes
    8. 9.7 Alkyne Acidity: Formation of Acetylide Anions
    9. 9.8 Alkylation of Acetylide Anions
    10. 9.9 An Introduction to Organic Synthesis
    11. Chemistry Matters—The Art of Organic Synthesis
    12. Key Terms
    13. Summary
    14. Summary of Reactions
    15. Additional Problems
  11. 10 Organohalides
    1. Why This Chapter?
    2. 10.1 Names and Structures of Alkyl Halides
    3. 10.2 Preparing Alkyl Halides from Alkanes: Radical Halogenation
    4. 10.3 Preparing Alkyl Halides from Alkenes: Allylic Bromination
    5. 10.4 Stability of the Allyl Radical: Resonance Revisited
    6. 10.5 Preparing Alkyl Halides from Alcohols
    7. 10.6 Reactions of Alkyl Halides: Grignard Reagents
    8. 10.7 Organometallic Coupling Reactions
    9. 10.8 Oxidation and Reduction in Organic Chemistry
    10. Chemistry Matters—Naturally Occurring Organohalides
    11. Key Terms
    12. Summary
    13. Summary of Reactions
    14. Additional Problems
  12. 11 Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations
    1. Why This Chapter?
    2. 11.1 The Discovery of Nucleophilic Substitution Reactions
    3. 11.2 The SN2 Reaction
    4. 11.3 Characteristics of the SN2 Reaction
    5. 11.4 The SN1 Reaction
    6. 11.5 Characteristics of the SN1 Reaction
    7. 11.6 Biological Substitution Reactions
    8. 11.7 Elimination Reactions: Zaitsev’s Rule
    9. 11.8 The E2 Reaction and the Deuterium Isotope Effect
    10. 11.9 The E2 Reaction and Cyclohexane Conformation
    11. 11.10 The E1 and E1cB Reactions
    12. 11.11 Biological Elimination Reactions
    13. 11.12 A Summary of Reactivity: SN1, SN2, E1, E1cB, and E2
    14. Chemistry Matters—Green Chemistry
    15. Key Terms
    16. Summary
    17. Summary of Reactions
    18. Additional Problems
  13. 12 Structure Determination: Mass Spectrometry and Infrared Spectroscopy
    1. Why This Chapter?
    2. 12.1 Mass Spectrometry of Small Molecules: Magnetic-Sector Instruments
    3. 12.2 Interpreting Mass Spectra
    4. 12.3 Mass Spectrometry of Some Common Functional Groups
    5. 12.4 Mass Spectrometry in Biological Chemistry: Time-of-Flight (TOF) Instruments
    6. 12.5 Spectroscopy and the Electromagnetic Spectrum
    7. 12.6 Infrared Spectroscopy
    8. 12.7 Interpreting Infrared Spectra
    9. 12.8 Infrared Spectra of Some Common Functional Groups
    10. Chemistry Matters—X-Ray Crystallography
    11. Key Terms
    12. Summary
    13. Additional Problems
  14. 13 Structure Determination: Nuclear Magnetic Resonance Spectroscopy
    1. Why This Chapter?
    2. 13.1 Nuclear Magnetic Resonance Spectroscopy
    3. 13.2 The Nature of NMR Absorptions
    4. 13.3 Chemical Shifts
    5. 13.4 Chemical Shifts in 1H NMR Spectroscopy
    6. 13.5 Integration of 1H NMR Absorptions: Proton Counting
    7. 13.6 Spin–Spin Splitting in 1H NMR Spectra
    8. 13.7 1H NMR Spectroscopy and Proton Equivalence
    9. 13.8 More Complex Spin–Spin Splitting Patterns
    10. 13.9 Uses of 1H NMR Spectroscopy
    11. 13.10 13C NMR Spectroscopy: Signal Averaging and FT–NMR
    12. 13.11 Characteristics of 13C NMR Spectroscopy
    13. 13.12 DEPT 13C NMR Spectroscopy
    14. 13.13 Uses of 13C NMR Spectroscopy
    15. Chemistry Matters—Magnetic Resonance Imaging (MRI)
    16. Key Terms
    17. Summary
    18. Additional Problems
  15. 14 Conjugated Compounds and Ultraviolet Spectroscopy
    1. Why This Chapter?
    2. 14.1 Stability of Conjugated Dienes: Molecular Orbital Theory
    3. 14.2 Electrophilic Additions to Conjugated Dienes: Allylic Carbocations
    4. 14.3 Kinetic versus Thermodynamic Control of Reactions
    5. 14.4 The Diels–Alder Cycloaddition Reaction
    6. 14.5 Characteristics of the Diels–Alder Reaction
    7. 14.6 Diene Polymers: Natural and Synthetic Rubbers
    8. 14.7 Ultraviolet Spectroscopy
    9. 14.8 Interpreting Ultraviolet Spectra: The Effect of Conjugation
    10. 14.9 Conjugation, Color, and the Chemistry of Vision
    11. Chemistry Matters—Photolithography
    12. Key Terms
    13. Summary
    14. Summary of Reactions
    15. Additional Problems
  16. 15 Benzene and Aromaticity
    1. Why This Chapter?
    2. 15.1 Naming Aromatic Compounds
    3. 15.2 Structure and Stability of Benzene
    4. 15.3 Aromaticity and the Hückel 4n + 2 Rule
    5. 15.4 Aromatic Ions
    6. 15.5 Aromatic Heterocycles: Pyridine and Pyrrole
    7. 15.6 Polycyclic Aromatic Compounds
    8. 15.7 Spectroscopy of Aromatic Compounds
    9. Chemistry Matters—Aspirin, NSAIDs, and COX-2 Inhibitors
    10. Key Terms
    11. Summary
    12. Additional Problems
  17. 16 Chemistry of Benzene: Electrophilic Aromatic Substitution
    1. Why This Chapter?
    2. 16.1 Electrophilic Aromatic Substitution Reactions: Bromination
    3. 16.2 Other Aromatic Substitutions
    4. 16.3 Alkylation and Acylation of Aromatic Rings: The Friedel–Crafts Reaction
    5. 16.4 Substituent Effects in Electrophilic Substitutions
    6. 16.5 Trisubstituted Benzenes: Additivity of Effects
    7. 16.6 Nucleophilic Aromatic Substitution
    8. 16.7 Benzyne
    9. 16.8 Oxidation of Aromatic Compounds
    10. 16.9 Reduction of Aromatic Compounds
    11. 16.10 Synthesis of Polysubstituted Benzenes
    12. Chemistry Matters—Combinatorial Chemistry
    13. Key Terms
    14. Summary
    15. Summary of Reactions
    16. Additional Problems
  18. 17 Alcohols and Phenols
    1. Why This Chapter?
    2. 17.1 Naming Alcohols and Phenols
    3. 17.2 Properties of Alcohols and Phenols
    4. 17.3 Preparation of Alcohols: A Review
    5. 17.4 Alcohols from Carbonyl Compounds: Reduction
    6. 17.5 Alcohols from Carbonyl Compounds: Grignard Reaction
    7. 17.6 Reactions of Alcohols
    8. 17.7 Oxidation of Alcohols
    9. 17.8 Protection of Alcohols
    10. 17.9 Phenols and Their Uses
    11. 17.10 Reactions of Phenols
    12. 17.11 Spectroscopy of Alcohols and Phenols
    13. Chemistry Matters—Ethanol: Chemical, Drug, and Poison
    14. Key Terms
    15. Summary
    16. Summary of Reactions
    17. Additional Problems
  19. 18 Ethers and Epoxides; Thiols and Sulfides
    1. Why This Chapter?
    2. 18.1 Names and Properties of Ethers
    3. 18.2 Preparing Ethers
    4. 18.3 Reactions of Ethers: Acidic Cleavage
    5. 18.4 Cyclic Ethers: Epoxides
    6. 18.5 Reactions of Epoxides: Ring-Opening
    7. 18.6 Crown Ethers
    8. 18.7 Thiols and Sulfides
    9. 18.8 Spectroscopy of Ethers
    10. Chemistry Matters—Epoxy Resins and Adhesives
    11. Key Terms
    12. Summary
    13. Summary of Reactions
    14. Additional Problems
    15. Preview of Carbonyl Chemistry
  20. 19 Aldehydes and Ketones: Nucleophilic Addition Reactions
    1. Why This Chapter?
    2. 19.1 Naming Aldehydes and Ketones
    3. 19.2 Preparing Aldehydes and Ketones
    4. 19.3 Oxidation of Aldehydes and Ketones
    5. 19.4 Nucleophilic Addition Reactions of Aldehydes and Ketones
    6. 19.5 Nucleophilic Addition of H2O: Hydration
    7. 19.6 Nucleophilic Addition of HCN: Cyanohydrin Formation
    8. 19.7 Nucleophilic Addition of Hydride and Grignard Reagents: Alcohol Formation
    9. 19.8 Nucleophilic Addition of Amines: Imine and Enamine Formation
    10. 19.9 Nucleophilic Addition of Hydrazine: The Wolff–Kishner Reaction
    11. 19.10 Nucleophilic Addition of Alcohols: Acetal Formation
    12. 19.11 Nucleophilic Addition of Phosphorus Ylides: The Wittig Reaction
    13. 19.12 Biological Reductions
    14. 19.13 Conjugate Nucleophilic Addition to α,β‑Unsaturated Aldehydes and Ketones
    15. 19.14 Spectroscopy of Aldehydes and Ketones
    16. Chemistry Matters—Enantioselective Synthesis
    17. Key Terms
    18. Summary
    19. Summary of Reactions
    20. Additional Problems
  21. 20 Carboxylic Acids and Nitriles
    1. Why This Chapter?
    2. 20.1 Naming Carboxylic Acids and Nitriles
    3. 20.2 Structure and Properties of Carboxylic Acids
    4. 20.3 Biological Acids and the Henderson–Hasselbalch Equation
    5. 20.4 Substituent Effects on Acidity
    6. 20.5 Preparing Carboxylic Acids
    7. 20.6 Reactions of Carboxylic Acids: An Overview
    8. 20.7 Chemistry of Nitriles
    9. 20.8 Spectroscopy of Carboxylic Acids and Nitriles
    10. Chemistry Matters—Vitamin C
    11. Key Terms
    12. Summary
    13. Summary of Reactions
    14. Additional Problems
  22. 21 Carboxylic Acid Derivatives: Nucleophilic Acyl Substitution Reactions
    1. Why This Chapter?
    2. 21.1 Naming Carboxylic Acid Derivatives
    3. 21.2 Nucleophilic Acyl Substitution Reactions
    4. 21.3 Reactions of Carboxylic Acids
    5. 21.4 Chemistry of Acid Halides
    6. 21.5 Chemistry of Acid Anhydrides
    7. 21.6 Chemistry of Esters
    8. 21.7 Chemistry of Amides
    9. 21.8 Chemistry of Thioesters and Acyl Phosphates: Biological Carboxylic Acid Derivatives
    10. 21.9 Polyamides and Polyesters: Step-Growth Polymers
    11. 21.10 Spectroscopy of Carboxylic Acid Derivatives
    12. Chemistry Matters—β-Lactam Antibiotics
    13. Key Terms
    14. Summary
    15. Summary of Reactions
    16. Additional Problems
  23. 22 Carbonyl Alpha-Substitution Reactions
    1. Why This Chapter?
    2. 22.1 Keto–Enol Tautomerism
    3. 22.2 Reactivity of Enols: α-Substitution Reactions
    4. 22.3 Alpha Halogenation of Aldehydes and Ketones
    5. 22.4 Alpha Bromination of Carboxylic Acids
    6. 22.5 Acidity of Alpha Hydrogen Atoms: Enolate Ion Formation
    7. 22.6 Reactivity of Enolate Ions
    8. 22.7 Alkylation of Enolate Ions
    9. Chemistry Matters—Barbiturates
    10. Key Terms
    11. Summary
    12. Summary of Reactions
    13. Additional Problems
  24. 23 Carbonyl Condensation Reactions
    1. Why This Chapter?
    2. 23.1 Carbonyl Condensations: The Aldol Reaction
    3. 23.2 Carbonyl Condensations versus Alpha Substitutions
    4. 23.3 Dehydration of Aldol Products: Synthesis of Enones
    5. 23.4 Using Aldol Reactions in Synthesis
    6. 23.5 Mixed Aldol Reactions
    7. 23.6 Intramolecular Aldol Reactions
    8. 23.7 The Claisen Condensation Reaction
    9. 23.8 Mixed Claisen Condensations
    10. 23.9 Intramolecular Claisen Condensations: The Dieckmann Cyclization
    11. 23.10 Conjugate Carbonyl Additions: The Michael Reaction
    12. 23.11 Carbonyl Condensations with Enamines: The Stork Enamine Reaction
    13. 23.12 The Robinson Annulation Reaction
    14. 23.13 Some Biological Carbonyl Condensation Reactions
    15. Chemistry Matters—A Prologue to Metabolism
    16. Key Terms
    17. Summary
    18. Summary of Reactions
    19. Additional Problems
  25. 24 Amines and Heterocycles
    1. Why This Chapter?
    2. 24.1 Naming Amines
    3. 24.2 Structure and Properties of Amines
    4. 24.3 Basicity of Amines
    5. 24.4 Basicity of Arylamines
    6. 24.5 Biological Amines and the Henderson–Hasselbalch Equation
    7. 24.6 Synthesis of Amines
    8. 24.7 Reactions of Amines
    9. 24.8 Reactions of Arylamines
    10. 24.9 Heterocyclic Amines
    11. 24.10 Spectroscopy of Amines
    12. Chemistry Matters—Green Chemistry II: Ionic Liquids
    13. Key Terms
    14. Summary
    15. Summary of Reactions
    16. Additional Problems
  26. 25 Biomolecules: Carbohydrates
    1. Why This Chapter?
    2. 25.1 Classification of Carbohydrates
    3. 25.2 Representing Carbohydrate Stereochemistry: Fischer Projections
    4. 25.3 D,L Sugars
    5. 25.4 Configurations of the Aldoses
    6. 25.5 Cyclic Structures of Monosaccharides: Anomers
    7. 25.6 Reactions of Monosaccharides
    8. 25.7 The Eight Essential Monosaccharides
    9. 25.8 Disaccharides
    10. 25.9 Polysaccharides and Their Synthesis
    11. 25.10 Some Other Important Carbohydrates
    12. Chemistry Matters—Sweetness
    13. Key Terms
    14. Summary
    15. Summary of Reactions
    16. Additional Problems
  27. 26 Biomolecules: Amino Acids, Peptides, and Proteins
    1. Why This Chapter?
    2. 26.1 Structures of Amino Acids
    3. 26.2 Amino Acids and the Henderson–Hasselbalch Equation: Isoelectric Points
    4. 26.3 Synthesis of Amino Acids
    5. 26.4 Peptides and Proteins
    6. 26.5 Amino Acid Analysis of Peptides
    7. 26.6 Peptide Sequencing: The Edman Degradation
    8. 26.7 Peptide Synthesis
    9. 26.8 Automated Peptide Synthesis: The Merrifield Solid-Phase Method
    10. 26.9 Protein Structure
    11. 26.10 Enzymes and Coenzymes
    12. 26.11 How Do Enzymes Work? Citrate Synthase
    13. Chemistry Matters—The Protein Data Bank
    14. Key Terms
    15. Summary
    16. Summary of Reactions
    17. Additional Problems
  28. 27 Biomolecules: Lipids
    1. Why This Chapter?
    2. 27.1 Waxes, Fats, and Oils
    3. 27.2 Soap
    4. 27.3 Phospholipids
    5. 27.4 Prostaglandins and Other Eicosanoids
    6. 27.5 Terpenoids
    7. 27.6 Steroids
    8. 27.7 Biosynthesis of Steroids
    9. Chemistry Matters—Saturated Fats, Cholesterol, and Heart Disease
    10. Key Terms
    11. Summary
    12. Additional Problems
  29. 28 Biomolecules: Nucleic Acids
    1. Why This Chapter?
    2. 28.1 Nucleotides and Nucleic Acids
    3. 28.2 Base Pairing in DNA
    4. 28.3 Replication of DNA
    5. 28.4 Transcription of DNA
    6. 28.5 Translation of RNA: Protein Biosynthesis
    7. 28.6 DNA Sequencing
    8. 28.7 DNA Synthesis
    9. 28.8 The Polymerase Chain Reaction
    10. Chemistry Matters—DNA Fingerprinting
    11. Key Terms
    12. Summary
    13. Additional Problems
  30. 29 The Organic Chemistry of Metabolic Pathways
    1. Why This Chapter?
    2. 29.1 An Overview of Metabolism and Biochemical Energy
    3. 29.2 Catabolism of Triacylglycerols: The Fate of Glycerol
    4. 29.3 Catabolism of Triacylglycerols: β-Oxidation
    5. 29.4 Biosynthesis of Fatty Acids
    6. 29.5 Catabolism of Carbohydrates: Glycolysis
    7. 29.6 Conversion of Pyruvate to Acetyl CoA
    8. 29.7 The Citric Acid Cycle
    9. 29.8 Carbohydrate Biosynthesis: Gluconeogenesis
    10. 29.9 Catabolism of Proteins: Deamination
    11. 29.10 Some Conclusions about Biological Chemistry
    12. Chemistry Matters—Statin Drugs
    13. Key Terms
    14. Summary
    15. Additional Problems
  31. 30 Orbitals and Organic Chemistry: Pericyclic Reactions
    1. Why This Chapter?
    2. 30.1 Molecular Orbitals of Conjugated Pi Systems
    3. 30.2 Electrocyclic Reactions
    4. 30.3 Stereochemistry of Thermal Electrocyclic Reactions
    5. 30.4 Photochemical Electrocyclic Reactions
    6. 30.5 Cycloaddition Reactions
    7. 30.6 Stereochemistry of Cycloadditions
    8. 30.7 Sigmatropic Rearrangements
    9. 30.8 Some Examples of Sigmatropic Rearrangements
    10. 30.9 A Summary of Rules for Pericyclic Reactions
    11. Chemistry Matters—Vitamin D, the Sunshine Vitamin
    12. Key Terms
    13. Summary
    14. Additional Problems
  32. 31 Synthetic Polymers
    1. Why This Chapter?
    2. 31.1 Chain-Growth Polymers
    3. 31.2 Stereochemistry of Polymerization: Ziegler–Natta Catalysts
    4. 31.3 Copolymers
    5. 31.4 Step-Growth Polymers
    6. 31.5 Olefin Metathesis Polymerization
    7. 31.6 Intramolecular Olefin Metathesis
    8. 31.7 Polymer Structure and Physical Properties
    9. Chemistry Matters—Degradable Polymers
    10. Key Terms
    11. Summary
    12. Additional Problems
  33. A | Nomenclature of Polyfunctional Organic Compounds
  34. B | Acidity Constants for Some Organic Compounds
  35. C | Glossary
  36. D | Periodic Table
  37. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
    22. Chapter 22
    23. Chapter 23
    24. Chapter 24
    25. Chapter 25
    26. Chapter 26
    27. Chapter 27
    28. Chapter 28
    29. Chapter 29
    30. Chapter 30
    31. Chapter 31
  38. Index

11.3 • Characteristics of the SN2 Reaction

Now that we know how SN2 reactions occur, we need to see how they can be used and what variables affect them. Some SN2 reactions are fast, and some are slow; some take place in high yield and others in low yield. Understanding the factors involved can be of tremendous value. Let’s begin by recalling a few things about reaction rates in general.

The rate of a chemical reaction is determined by the activation energy ∆G, the energy difference between reactant ground state and transition state. A change in reaction conditions can affect ∆G either by changing the reactant energy level or by changing the transition-state energy level. Lowering the reactant energy or raising the transition-state energy increases ∆G and decreases the reaction rate; raising the reactant energy or decreasing the transition-state energy decreases ∆G and increases the reaction rate (Figure 11.6). We’ll see examples of all these effects as we look at SN2 reaction variables.

Two line graphs of energy level versus reaction progress. In both graphs, the vertical distance between starting point of curves and their peaks is labeled by delta G double dagger.
Figure 11.6 The effects of changes in reactant and transition-state energy levels on reaction rate. (a) A higher reactant energy level (red curve) corresponds to a faster reaction (smaller ∆G). (b) A higher transition-state energy level (red curve) corresponds to a slower reaction (larger ∆G).

Steric Effects in the SN2 Reaction

The first SN2 reaction variable to look at is the structure of the substrate. Because the SN2 transition state involves partial bond formation between the incoming nucleophile and the alkyl halide carbon atom, it seems reasonable that a hindered, bulky substrate should prevent easy approach of the nucleophile, making bond formation difficult. In other words, the transition state for reaction of a sterically hindered substrate, whose carbon atom is “shielded” from the approach of the incoming nucleophile, is higher in energy and forms more slowly than the corresponding transition state for a less hindered substrate (Figure 11.7).

The figure shows the structures and space-filling models of four compounds. The substrate carbon is more accessible to nucleophilic attack (less hindered) in methyl bromide and most hindered in t-butylbromide.
Figure 11.7 Steric hindrance to the SN2 reaction. As the models indicate, the carbon atom in (a) bromomethane is readily accessible, resulting in a fast SN2 reaction. The carbon atoms in (b) bromoethane (primary), (c) 2-bromopropane (secondary), and (d) 2-bromo-2-methylpropane (tertiary) are successively more hindered, resulting in successively slower SN2 reactions.

As Figure 11.7 shows, the difficulty of nucleophile approach increases as the three substituents bonded to the halo-substituted carbon atom increase in size. Methyl halides are by far the most reactive substrates in SN2 reactions, followed by primary alkyl halides such as ethyl and propyl. Alkyl branching at the reacting center, as in isopropyl halides (2°), slows the reaction greatly, and further branching, as in tert-butyl halides (3°), effectively halts the reaction. Even branching one carbon away from the reacting center, as in 2,2-dimethylpropyl (neopentyl) halides, greatly hinders nucleophilic displacement. As a result, SN2 reactions occur only at relatively unhindered sites and are normally useful only with methyl halides, primary halides, and a few simple secondary halides. Relative reactivities for some different substrates are as follows:

A reaction between R-Br and chloride ion gives R-Cl and bromide ion. S N 2 reactivity of five compounds are in increasing order: Tertiary, Neopentyl, Secondary, Primary, and Methyl.

Vinylic halides (R2C═CRXR2C═CRX) and aryl halides are not shown on this reactivity list because they are unreactive toward SN2 displacement. This lack of reactivity is due to steric factors: the incoming nucleophile would have to approach in the plane of the carbon–carbon double bond and burrow through part of the molecule to carry out a backside displacement.

Structures of vinylic halide and aryl halide show such molecules cannot react with a nucleophile because there is no clear path of attack on the backside of the carbon.

The Nucleophile

Another variable that has a major effect on the SN2 reaction is the nature of the nucleophile. Any species, either neutral or negatively charged, can act as a nucleophile as long as it has an unshared pair of electrons; that is, as long as it is a Lewis base. If the nucleophile is negatively charged, the product is neutral; if the nucleophile is neutral, the product is positively charged.

R-Y reacts with negatively charged nucleophile to form neutral product and Y anion. In the second reaction, R-Y reacts with neutral nucleophile to form positively charged product and Y anion.

A wide array of substances can be prepared using nucleophilic substitution reactions. In fact, we’ve already seen examples in previous chapters. For instance, the reaction of an acetylide anion with an alkyl halide, discussed in Section 9.8, is an SN2 reaction in which the acetylide nucleophile displaces a halide leaving group.

An S N 2 reaction between an acetylide anion and methyl bromide forms an alkyne and bromide ion.

Table 11.1 lists some nucleophiles in the order of their reactivity, shows the products of their reactions with bromomethane, and gives the relative rates of their reactions. There are large differences in the rates at which various nucleophiles react.

Table 11.1 Some SN2 Reactions with Bromomethane
Nu: + CH3Br → CH3Nu + Br
Nucleophile Product Relative rate of reaction
Formula Name Formula Name
H2O Water CH3OH2+ Methylhydronium ion      1
CH3CO2 Acetate CH3CO2CH3 Methyl acetate    500
NH3 Ammonia CH3NH3+ Methylammonium ion    700
Cl Chloride CH3Cl Chloromethane   1,000
HO Hydroxide CH3OH Methanol  10,000
CH3O Methoxide CH3OCH3 Dimethyl ether  25,000
I Iodide CH3I Iodomethane 100,000
CN Cyanide CH3CN Acetonitrile 125,000
HS Hydrosulfide CH3SH Methanethiol 125,000

What are the reasons for the reactivity differences observed in Table 11.1? Why do some reactants appear to be much more “nucleophilic” than others? The answers to these questions aren’t straightforward. Part of the problem is that the term nucleophilicity is imprecise. The term is usually taken to be a measure of the affinity of a nucleophile for a carbon atom in the SN2 reaction, but the reactivity of a given nucleophile can change from one reaction to the next. The exact nucleophilicity of a species in a given reaction depends on the substrate, the solvent, and even the reactant concentrations. Detailed explanations for the observed nucleophilicities aren’t always simple, but some trends can be detected from the data of Table 11.1.

  • Nucleophilicity roughly parallels basicity when comparing nucleophiles that have the same reacting atom. Thus, OH is both more basic and more nucleophilic than acetate ion, CH3CO2, which in turn is more basic and more nucleophilic than H2O. Since “nucleophilicity” is usually taken as the affinity of a Lewis base for a carbon atom in the SN2 reaction and “basicity” is the affinity of a base for a proton, it’s easy to see why there might be a correlation between the two kinds of behavior.
  • Nucleophilicity usually increases going down a column of the periodic table. Thus, HS is more nucleophilic than HO, and the halide reactivity order is I > Br > Cl. Going down the periodic table, elements have their valence electrons in successively larger shells where they are successively farther from the nucleus, less tightly held, and consequently more reactive. This matter is complex, though, and the nucleophilicity order can change depending on the solvent.
  • Negatively charged nucleophiles are usually more reactive than neutral ones. As a result, SN2 reactions are often carried out under basic conditions rather than neutral or acidic conditions.
Problem 11-4
What product would you expect from SN2 reaction of 1-bromobutane with each of the following?
H−C C−Li
Problem 11-5
Which substance in each of the following pairs is more reactive as a nucleophile? Explain.
(CH3)2N or (CH3)2NH
(CH3)3B or (CH3)3N
H2O or H2S

The Leaving Group

Still another variable that can affect the SN2 reaction is the nature of the group displaced by the incoming nucleophile, the leaving group. Because the leaving group is expelled with a negative charge in most SN2 reactions, the best leaving groups are those that best stabilize the negative charge in the transition state. The greater the extent of charge stabilization by the leaving group, the lower the energy of the transition state and the more rapid the reaction. But as we saw in Section 2.8, the groups that best stabilize a negative charge are also the weakest bases. Thus, weak bases such as Cl, Br, and tosylate ion make good leaving groups, while strong bases such as OH and NH2 make poor leaving groups.

Leaving groups in increasing order of reactivity: hydroxyl ion, amino group, and O-R ion have very low reactivity, followed by fluoride, chloride, bromide, iodide, and T o s O ions.

It’s just as important to know which are poor leaving groups as to know which are good, and the preceding data clearly indicate that F, HO, RO, and H2N are not displaced by nucleophiles. In other words, alkyl fluorides, alcohols, ethers, and amines do not typically undergo SN2 reactions. To carry out an SN2 reaction with an alcohol, it’s necessary to convert the OH into a better leaving group. This, in fact, is just what happens when a primary or secondary alcohol is converted into either an alkyl chloride by reaction with SOCl2 or an alkyl bromide by reaction with PBr3 (Section 10.5).

S N 2 reactions of primary or secondary alcohol with halide, where O H first reacts with S O Cl 2 or P Br 3. The products are alkyl halides.

Alternatively, an alcohol can be made more reactive toward nucleophilic substitution by treating it with para-toluenesulfonyl chloride to form a tosylate. As noted previously, tosylates are even more reactive than halides in nucleophilic substitutions. Note that tosylate formation does not change the configuration of the oxygen-bearing carbon because the C–O bond is not broken.

A reaction of a primary or secondary alcohol with para-toluenesulfonyl chloride in the presence of ether and pyridine yields a tosylate.

The one general exception to the rule that ethers don’t typically undergo SN2 reactions pertains to epoxides, the three-membered cyclic ethers that we saw in Section 8.7. Because of the angle strain in their three-membered ring, epoxides are much more reactive than other ethers. They react with aqueous acid to give 1,2-diols, as we saw in Section 8.7, and they react readily with many other nucleophiles as well. Propene oxide, for instance, reacts with HCl to give 1-chloro-2-propanol by an SN2 backside attack on the less hindered primary carbon atom. We’ll look at the process in more detail in Section 18.5.

A reaction mechanism of propene oxide with hydrogen chloride produces a protonated epoxide intermediate, which reacts by S N 2 to form 1-chloro-2-propanol.
Problem 11-6

Rank the following compounds in order of their expected reactivity toward SN2 reaction:

CH3Br, CH3OTos, (CH3)3CCl, (CH3)2CHCl

The Solvent

The rates of SN2 reactions are strongly affected by the solvent. Protic solvents—those that contain an –OH or –NH group—are generally the worst for SN2 reactions, while polar aprotic solvents, which are polar but don’t have an –OH or –NH group, are the best.

Protic solvents, such as methanol and ethanol, slow down SN2 reactions by solvation of the reactant nucleophile. The solvent molecules hydrogen-bond to the nucleophile and form a cage around it, thereby lowering its energy and reactivity.

The structure of a solvated anion, where the anion interacts with hydrogen from alcohol. Text reads reduced nucleophilicity due to enhanced ground-state stability.

In contrast with protic solvents—which decrease the rates of SN2 reactions by lowering the ground-state energy of the nucleophile—polar aprotic solvents increase the rates of SN2 reactions by raising the ground-state energy of the nucleophile. Acetonitrile (CH3CN), dimethylformamide [(CH3)2NCHO, abbreviated DMF], and dimethyl sulfoxide [(CH3)2SO, abbreviated DMSO] are particularly useful. A solvent known as hexamethylphosphoramide {[(CH3)2N]3PO, abbreviated HMPA} can also be useful but it should only be handled with great care and not be allowed to touch the eyes or skin. These solvents can dissolve many salts because of their high polarity, but they tend to solvate metal cations rather than nucleophilic anions. As a result, the bare, unsolvated anions have a greater nucleophilicity and SN2 reactions take place at correspondingly increased rates. For instance, a rate increase of 200,000 has been observed on changing from methanol to HMPA for the reaction of azide ion with 1-bromobutane.

Reaction of 1-bromobutane with nitride ion forms bromide and butane with N 3 substituent. Various solvents in increasing order of reactivity: methanol, water, dimethyl sulfoxide, dimethylformamide, acetonitrile, and hexamethylphosphoramide.
Problem 11-7
Organic solvents like benzene, ether, and chloroform are neither protic nor strongly polar. What effect would you expect these solvents to have on the reactivity of a nucleophile in SN2 reactions?

A Summary of SN2 Reaction Characteristics

The effects on SN2 reactions of the four variables—substrate structure, nucleophile, leaving group, and solvent—are summarized in the following statements and in the energy diagrams of Figure 11.8:

Substrate Steric hindrance raises the energy of the SN2 transition state, increasing ∆G and decreasing the reaction rate (Figure 11.8a). As a result, SN2 reactions are best for methyl and primary substrates. Secondary substrates react slowly, and tertiary substrates do not react by an SN2 mechanism.
Nucleophile Basic, negatively charged nucleophiles are less stable and have a higher ground-state energy than neutral ones, decreasing ∆G and increasing the SN2 reaction rate (Figure 11.8b).
Leaving group Good leaving groups (more stable anions) lower the energy of the transition state, decreasing ∆G and increasing the SN2 reaction rate (Figure 11.8c).
Solvent Protic solvents solvate the nucleophile, thereby lowering its ground-state energy, increasing ∆G, and decreasing the SN2 reaction rate. Polar aprotic solvents surround the accompanying cation but not the nucleophilic anion, thereby raising the ground-state energy of the nucleophile, decreasing ∆G, and increasing the reaction rate (Figure 11.8d).
Four energy diagrams show faster reaction  with unhindered substrate (lower product energy), good nucleophile (higher reactant energy), good leaving group (lower product energy) and polar aprotic solvent (higher reactant energy).
Figure 11.8 Energy diagrams showing the effects of (a) substrate, (b) nucleophile, (c) leaving group, and (d) solvent on SN2 reaction rates. Substrate and leaving group effects are felt primarily in the transition state. Nucleophile and solvent effects are felt primarily in the reactant ground state.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at
Citation information

© Sep 25, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.