Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

5.1 Gastrulation and Formation of the Neural Tube (Neurulation)

Cater, S. W., Boyd, B. K., & Ghate, S. V. (2020). Abnormalities of the fetal central nervous system: Prenatal US diagnosis with postnatal correlation. RadioGraphics, 40(5), 1458–1472 https://doi.org/10.1148/rg.2020200034.

De Robertis, E. M. (2006). Spemann’s organizer and self-regulation in amphibian embryos. Nature Reviews Molecular Cell Biology, 7(4), 296–302. https://doi.org/10.1038/nrm1855

Harland, R., & Gerhart, J. (1997). Formation and function of Spemann’s organizer. Annual Review of Cell and Developmental Biology, 13(1), 611–667. https://doi.org/10.1146/annurev.cellbio.13.1.611

Harris, M. J., & Juriloff, D. M. (2010). An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Research Part A: Clinical and Molecular Teratology, 88(8), 653–669. https://doi.org/10.1002/bdra.20676

Ornoy, A. (2006). Neuroteratogens in man: An overview with special emphasis on the teratogenicity of antiepileptic drugs in pregnancy. Reproductive Toxicology, 22(2), 214–226. https://doi.org/10.1016/j.reprotox.2006.03.014

Spemann, H., & Mangold, H. (1924). Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Archiv für Mikroskopische Anatomie und Entwicklungsmechanik, 100(3–4), 599–638. https://doi.org/10.1007/BF02108133

Valenzuela, D. M., Economides, A. N., Rojas, E., Lamb, T. M., Nuñez, L., Jones, P., Lp, N. Y., Espinosa, R., Brannan, C. I., & Gilbert, D. J. (1995). Identification of mammalian noggin and its expression in the adult nervous system. Journal of Neuroscience, 15(9) 6077–6084. https://doi.org/10.1523/jneurosci.15-09-06077.1995

Wallingford, J. B., Niswander, L. A., Shaw, G. M., & Finnell, R. H. (2013). The continuing challenge of understanding and preventing neural tube defects. Science, 339(6123), 1222002. https://doi.org/10.1126/science.1222002

5.2 Growth and Development of the Early Brain

Antoniou, E., Orovou, E., Sarella, A., Iliadou, M., Rigas, N., Palaska, E., Iatrakis, G., & Dagla, M. (2020). Zika virus and the risk of developing microcephaly in infants: A systematic review. International Journal of Environmental Research and Public Health, 17(11), 3806. https://doi.org/10.3390/ijerph17113806

Bertrand, N., Castro, D. S., & Guillemot, F. (2002). Proneural genes and the specification of neural cell types. Nature Reviews Neuroscience, 3(7), 517–530. https://doi.org/10.1038/nrn874

Cohen, M. M., & Shiota, K. (2002). Teratogenesis of holoprosencephaly. American Journal of Medical Genetics, 109(1), 1–15. https://doi.org/10.1002/ajmg.10258

Edward, D. P., & Kaufman, L. M. (2003). Anatomy, development, and physiology of the visual system. Pediatric Clinics of North America, 50(1), 1–23. https://doi.org/10.1016/s0031-3955(02)00132-3

Garcez, P. P., Loiola, E. C., Madeiro da Costa, R., Higa, L. M., Trindade, P., Delvecchio, R., & Rehen, S. K. (2016). Zika virus impairs growth in human neurospheres and brain organoids. Science, 352(6287), 816-818. https://doi.org/10.1126/science.aaf6116

Geng, X., & Oliver, G. (2009). Pathogenesis of holoprosencephaly. Journal of Clinical Investigation, 119(6), 1403–1413. https://doi.org/10.1172/JCI38937

Hirth, F., Therianos, S., Loop, T., Gehring, W. J., Reichert, H., & Furukubo-Tokunaga, K. (1995). Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila. Neuron, 15(4), 769–778. https://doi.org/10.1016/0896-6273(95)90169-8

Hong, M., & Krauss, R. S. (2012). Cdon mutation and fetal ethanol exposure synergize to produce midline signaling defects and holoprosencephaly spectrum disorders in mice. PLoS Genetics, 8(10), e1002999. https://doi.org/10.1371/journal.pgen.1002999

Krumlauf, R., & Wilkinson, D. G. (2021). Segmentation and patterning of the vertebrate hindbrain. Development, 148(15), dev186460. https://doi.org/10.1242/DEV.186460

Millet, S., Bloch-Gallego, E., Simeone, A., & Alvarado-Mallart, R. M. (1996). The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development, 122(12), 3785-3797. https://doi.org/10.1242/dev.122.12.3785

Mlakar, J., Korva, M., Tul, N., Popović, M., Poljšak-Prijatelj, M., Mraz, J., & Avšič Županc, T. (2016). Zika virus associated with microcephaly. New England Journal of Medicine, 374(10), 951-958. https://doi.org/10.1056/NEJMoa1600651

Nomura, T., Kawakami, A., & Fujisawa, H. (1998). Correlation between tectum formation and expression of two PAX family genes, PAX7 and PAX6, in avian brains. Development Growth & Difference, 40(5), 485–495. https://doi.org/10.1046/j.1440-169X.1998.t01-3-00003.x

Rakic, P. (1974). Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science, 183(4123), 425–427. https://doi.org/10.1126/science.183.4123.425

Weiss, K., Kruszka, P. S., Levey, E., & Muenke, M. (2018). Holoprosencephaly from conception to adulthood. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 178, 122–127. https://doi.org/10.1002/ajmg.c.31624

5.3 Synapse Formation and Maturation

Beckman, M. (2004). Crime, culpability, and the adolescent brain. Science, 305(5684), 596–599. https://doi.org/10.1126/science.305.5684.596

Bishop, D. L., Misgeld, T., Walsh, M. K., Gan, W.-B., & Lichtman, J. W. (2004). Axon branch removal at developing synapses by axosome shedding. Neuron, 44(4), 651–661. https://doi.org/10.1016/j.neuron.2004.10.026

Brown, M. C., Jansen, J. K., & Van Essen, D. (1976). Polyneuronal innervation of skeletal muscle in new-born rats and its elimination during maturation. Journal of Physiology, 261(2), 387–422. https://doi.org/10.1113/jphysiol.1976.sp011565

Cajal, S. R. (1995). Histology of the nervous system of man and vertebrates. History of Neuroscience (Oxford University Press).

Fields, R. D. (2005). Myelination: an overlooked mechanism of synaptic plasticity? The Neuroscientist, 11(6), 528-531. https://doi.org/10.1177/1073858405282304

Hamburger, V. (1934). The effects of wing bud extirpation on the development of the central nervous system in chick embryos. Journal of Experimental Zoology, 68(3), 449-494. https://doi.org/10.1002/jez.1400680305

Johnston, M. V. (2004). Clinical disorders of brain plasticity. Brain and Development, 26(2), 73–80. https://doi.org/10.1016/S0387-7604(03)00102-5

Juraska, J. M., & Kopcik, J. R. (1988). Sex and environmental influences on the size and ultrastructure of the rat corpus callosum. Brain Research, 450(1), 1–8. https://doi.org/10.1016/0006-8993(88)91538-7

Lee, Y. I. (2020). Developmental neuromuscular synapse elimination: Activity-dependence and potential downstream effector mechanisms. Neuroscience Letters, 718, 134724. https://doi.org/10.1016/j.neulet.2019.134724

Mariani, J., & Changeux, J. P. (1981). Ontogenesis of olivocerebellar relationships. II. Spontaneous activity of inferior olivary neurons and climbing fiber-mediated activity of cerebellar Purkinje cells in developing rats. Journal of Neuroscience, 1(7), 703–709. https://doi.org/10.1523/jneurosci.01-07-00703.1981

Sakai, J. (2020). Core Concept: How synaptic pruning shapes neural wiring during development and, possibly, in disease. Proceedings of the National Academy of Sciences USA, 117(28), 16096–16099. https://doi.org/10.1073/pnas.2010281117

Shorey, M. L. (1909). The effect of the destruction of peripheral areas on the differentiation of the neuroblasts... University of Chicago.

Stoeckli, E. T., & Landmesser, L. T. (1995). Axonin-1, Nr-CAM, and Ng-CAM play different roles in the in vivo guidance of chick commissural neurons. Neuron, 14(6), 1165–1179. https://doi.org/10.1016/0896-6273(95)90264-3

Szeligo, F., & Leblond, C. P. (1977). Response of the three main types of glial cells of cortex and corpus callosum in rats handled during suckling or exposed to enriched control and impoverished environments following weaning. Journal of Comparative Neurology, 172(2), 247–63.

Teicher, M. H., Dumont, N. L., Ito, Y., Vaituzis, C., Giedd, J. N., & Andersen, S. L. (2004). Childhood neglect is associated with reduced corpus callosum area. Biological Psychiatry, 56(2), 80–85. https://doi.org/10.1016/j.biopsych.2004.03.016

Todd, K. L., Kristan, W. B., Jr., & French, K. A. (2010). Gap junction expression is required for normal chemical synapse formation. The Journal of Neuroscience, 30(45), 15277–15285. https://doi.org/10.1523/JNEUROSCI.2331-10.2010

5.4 Experience Dependent Plasticity

Berenguer, M., & Duester, G. (2021). Role of retinoic acid signaling, FGF signaling and meis genes in control of limb development. Biomolecules, 11(1), 80. https://doi.org/10.3390/biom11010080

Berry, K. P., & Nedivi, E. (2016). Experience-dependent structural plasticity in the visual system. Annual Review of Vision Science, 2(1), 17–35. https://doi.org/10.1146/annurev-vision-111815-114638

Denny, L., Coles, S. M., & Blitz, R. (2017). Fetal Alcohol Syndrome and Fetal Alcohol Spectrum Disorders. American Family Physician, 96, 515–522.

De Robertis, E. M. (2009). Spemann’s organizer and the self-regulation of embryonic fields. Mechanisms of Development, 126(11), 925–941. https://doi.org/10.1016/j.mod.2009.08.004

Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: common themes and mechanisms. Annual Review of Neuroscience, 22(1), 567–631. https://doi.org/10.1146/annurev.neuro.22.1.567

Ernst, M. (2014). The triadic model perspective for the study of adolescent motivated behavior. Brain and Cognition, 89, 104-111. https://doi.org/10.1016/j.bandc.2014.01.006

Friedmann, N., & Rusou, D. (2015). Critical period for first language: the crucial role of language input during the first year of life. Current Opinion in Neurobiology, 35, 27–34. https://doi.org/10.1016/j.conb.2015.06.003

Hubel, D. H., & Wiesel, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. The Journal of Physiology, 206(2), 419–436. https://doi.org/10.1113/jphysiol.1970.sp009022

Larsen, B., & Luna, B. (2018). Adolescence as a neurobiological critical period for the development of higher-order cognition. Neuroscience & Biobehavioral Reviews, 94, 179-195. https://doi.org/10.1016/j.neubiorev.2018.09.005

Levelt, C. N., & Hübener, M. (2012). Critical-period plasticity in the visual cortex. Annual Review of Neuroscience, 35, 309–330. https://doi.org/10.1146/annurev-neuro-061010-113813

Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., & Meaney, M. J. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277(5332), 1659-1662. https://doi.org/10.1126/science.277.5332.1659

Meaney, M. J., & Szyf, M. (2022). Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues in Clinical Neuroscience, 7(2), 103–123. https://doi.org/10.31887/DCNS.2005.7.2/mmeaney

Perry, B. D. (2008). Childhood Experience and the Expression of Genetic Potential: What Childhood Neglect Tells Us About Nature and Nurture. Brain and Mind, 3(1), 79.

Pisoni, D. B., Cleary, M., Geers, A. E., & Tobey, E. A. (1999). Individual differences in effectiveness of cochlear implants in children who are prelingually deaf: New process measures of performance. The Volta Review, 101(3), 111–164.

Rymer, R. (1993). Genie: A Scientific Tragedy. HarperPerennial.

Sacks, O. (1985). The man who mistook his wife for a hat and other clinical tales. Summit Books.

Salus, M. W., & Curtiss, S. (1979). Genie: A Psycholinguistic Study of a Modern-Day “Wild Child”. Language, 55(3), 725–726. https://doi.org/10.2307/413340

Spear, L. P. (2000). Neurobehavioral changes in adolescence. Current Directions in Psychological Science, 9(4), 111-114. https://doi.org/10.1111/1467-8721.00072

Stockard, C. R. (1921). Developmental rate and structural expression: An experimental study of twins, “double monsters” and single deformities, and the interaction among embryonic organs during their origin and development. American Journal of Anatomy, 28(2), 115–277. https://doi.org/10.1002/aja.1000280202

Stryker, M. P., & Harris, W. A. (1986). Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. Journal of Neuroscience, 6(8), 2117-2133. https://doi.org/10.1523/jneurosci.06-08-02117.1986

Sulik, K. K., Johnston, M. C., & Webb, M. A. (1981). Fetal Alcohol Syndrome: Embryogenesis in a Mouse Model. Science, 214(4523), 936–938. https://doi.org/10.1126/science.6795717

Tian, N., & Copenhagen, D. R. (2001). Visual deprivation alters development of synaptic function in inner retina after eye opening. Neuron, 32(3), 439–449. https://doi.org/10.1016/S0896-6273(01)00470-6

Vistamehr, S., & Tian, N. (2004). Light deprivation suppresses the light response of inner retina in both young and adult mouse. Visual Neuroscience, 21(1), 23–37. https://doi.org/10.1017/S0952523804041033

Voss, P., Thomas, M. E., Cisneros-Franco, J. M., & de Villers-Sidani, É. (2017). Dynamic brains and the changing rules of neuroplasticity: Implications for learning and recovery. Frontiers in Psychology, 8, 1657. https://doi.org/10.3389/fpsyg.2017.01657

Wiesel, T. N., & Hubel, D. H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26, 1003–1017. https://doi.org/10.1152/jn.1963.26.6.1003

Williams, A. L., & Bohnsack, B. L. (2020). The ocular neural crest: Specification, migration, and then what?. Frontiers in Cell and Developmental Biology, 8, 595896. https://doi.org/10.3389/fcell.2020.595896

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
Citation information

© Oct 30, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.