5.1 Gastrulation and Formation of the Neural Tube (Neurulation)
Cater, S. W., Boyd, B. K., & Ghate, S. V. (2020). Abnormalities of the fetal central nervous system: Prenatal US diagnosis with postnatal correlation. RadioGraphics, 40(5), 1458–1472 https://doi.org/10.1148/rg.2020200034.
De Robertis, E. M. (2006). Spemann’s organizer and self-regulation in amphibian embryos. Nature Reviews Molecular Cell Biology, 7(4), 296–302. https://doi.org/10.1038/nrm1855
Harland, R., & Gerhart, J. (1997). Formation and function of Spemann’s organizer. Annual Review of Cell and Developmental Biology, 13(1), 611–667. https://doi.org/10.1146/annurev.cellbio.13.1.611
Harris, M. J., & Juriloff, D. M. (2010). An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Research Part A: Clinical and Molecular Teratology, 88(8), 653–669. https://doi.org/10.1002/bdra.20676
Ornoy, A. (2006). Neuroteratogens in man: An overview with special emphasis on the teratogenicity of antiepileptic drugs in pregnancy. Reproductive Toxicology, 22(2), 214–226. https://doi.org/10.1016/j.reprotox.2006.03.014
Spemann, H., & Mangold, H. (1924). Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Archiv für Mikroskopische Anatomie und Entwicklungsmechanik, 100(3–4), 599–638. https://doi.org/10.1007/BF02108133
Valenzuela, D. M., Economides, A. N., Rojas, E., Lamb, T. M., Nuñez, L., Jones, P., Lp, N. Y., Espinosa, R., Brannan, C. I., & Gilbert, D. J. (1995). Identification of mammalian noggin and its expression in the adult nervous system. Journal of Neuroscience, 15(9) 6077–6084. https://doi.org/10.1523/jneurosci.15-09-06077.1995
Wallingford, J. B., Niswander, L. A., Shaw, G. M., & Finnell, R. H. (2013). The continuing challenge of understanding and preventing neural tube defects. Science, 339(6123), 1222002. https://doi.org/10.1126/science.1222002
5.2 Growth and Development of the Early Brain
Antoniou, E., Orovou, E., Sarella, A., Iliadou, M., Rigas, N., Palaska, E., Iatrakis, G., & Dagla, M. (2020). Zika virus and the risk of developing microcephaly in infants: A systematic review. International Journal of Environmental Research and Public Health, 17(11), 3806. https://doi.org/10.3390/ijerph17113806
Bertrand, N., Castro, D. S., & Guillemot, F. (2002). Proneural genes and the specification of neural cell types. Nature Reviews Neuroscience, 3(7), 517–530. https://doi.org/10.1038/nrn874
Cohen, M. M., & Shiota, K. (2002). Teratogenesis of holoprosencephaly. American Journal of Medical Genetics, 109(1), 1–15. https://doi.org/10.1002/ajmg.10258
Edward, D. P., & Kaufman, L. M. (2003). Anatomy, development, and physiology of the visual system. Pediatric Clinics of North America, 50(1), 1–23. https://doi.org/10.1016/s0031-3955(02)00132-3
Garcez, P. P., Loiola, E. C., Madeiro da Costa, R., Higa, L. M., Trindade, P., Delvecchio, R., & Rehen, S. K. (2016). Zika virus impairs growth in human neurospheres and brain organoids. Science, 352(6287), 816-818. https://doi.org/10.1126/science.aaf6116
Geng, X., & Oliver, G. (2009). Pathogenesis of holoprosencephaly. Journal of Clinical Investigation, 119(6), 1403–1413. https://doi.org/10.1172/JCI38937
Hirth, F., Therianos, S., Loop, T., Gehring, W. J., Reichert, H., & Furukubo-Tokunaga, K. (1995). Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila. Neuron, 15(4), 769–778. https://doi.org/10.1016/0896-6273(95)90169-8
Hong, M., & Krauss, R. S. (2012). Cdon mutation and fetal ethanol exposure synergize to produce midline signaling defects and holoprosencephaly spectrum disorders in mice. PLoS Genetics, 8(10), e1002999. https://doi.org/10.1371/journal.pgen.1002999
Krumlauf, R., & Wilkinson, D. G. (2021). Segmentation and patterning of the vertebrate hindbrain. Development, 148(15), dev186460. https://doi.org/10.1242/DEV.186460
Millet, S., Bloch-Gallego, E., Simeone, A., & Alvarado-Mallart, R. M. (1996). The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development, 122(12), 3785-3797. https://doi.org/10.1242/dev.122.12.3785
Mlakar, J., Korva, M., Tul, N., Popović, M., Poljšak-Prijatelj, M., Mraz, J., & Avšič Županc, T. (2016). Zika virus associated with microcephaly. New England Journal of Medicine, 374(10), 951-958. https://doi.org/10.1056/NEJMoa1600651
Nomura, T., Kawakami, A., & Fujisawa, H. (1998). Correlation between tectum formation and expression of two PAX family genes, PAX7 and PAX6, in avian brains. Development Growth & Difference, 40(5), 485–495. https://doi.org/10.1046/j.1440-169X.1998.t01-3-00003.x
Rakic, P. (1974). Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science, 183(4123), 425–427. https://doi.org/10.1126/science.183.4123.425
Weiss, K., Kruszka, P. S., Levey, E., & Muenke, M. (2018). Holoprosencephaly from conception to adulthood. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 178, 122–127. https://doi.org/10.1002/ajmg.c.31624
5.3 Synapse Formation and Maturation
Beckman, M. (2004). Crime, culpability, and the adolescent brain. Science, 305(5684), 596–599. https://doi.org/10.1126/science.305.5684.596
Bishop, D. L., Misgeld, T., Walsh, M. K., Gan, W.-B., & Lichtman, J. W. (2004). Axon branch removal at developing synapses by axosome shedding. Neuron, 44(4), 651–661. https://doi.org/10.1016/j.neuron.2004.10.026
Brown, M. C., Jansen, J. K., & Van Essen, D. (1976). Polyneuronal innervation of skeletal muscle in new-born rats and its elimination during maturation. Journal of Physiology, 261(2), 387–422. https://doi.org/10.1113/jphysiol.1976.sp011565
Cajal, S. R. (1995). Histology of the nervous system of man and vertebrates. History of Neuroscience (Oxford University Press).
Fields, R. D. (2005). Myelination: an overlooked mechanism of synaptic plasticity? The Neuroscientist, 11(6), 528-531. https://doi.org/10.1177/1073858405282304
Hamburger, V. (1934). The effects of wing bud extirpation on the development of the central nervous system in chick embryos. Journal of Experimental Zoology, 68(3), 449-494. https://doi.org/10.1002/jez.1400680305
Johnston, M. V. (2004). Clinical disorders of brain plasticity. Brain and Development, 26(2), 73–80. https://doi.org/10.1016/S0387-7604(03)00102-5
Juraska, J. M., & Kopcik, J. R. (1988). Sex and environmental influences on the size and ultrastructure of the rat corpus callosum. Brain Research, 450(1), 1–8. https://doi.org/10.1016/0006-8993(88)91538-7
Lee, Y. I. (2020). Developmental neuromuscular synapse elimination: Activity-dependence and potential downstream effector mechanisms. Neuroscience Letters, 718, 134724. https://doi.org/10.1016/j.neulet.2019.134724
Mariani, J., & Changeux, J. P. (1981). Ontogenesis of olivocerebellar relationships. II. Spontaneous activity of inferior olivary neurons and climbing fiber-mediated activity of cerebellar Purkinje cells in developing rats. Journal of Neuroscience, 1(7), 703–709. https://doi.org/10.1523/jneurosci.01-07-00703.1981
Sakai, J. (2020). Core Concept: How synaptic pruning shapes neural wiring during development and, possibly, in disease. Proceedings of the National Academy of Sciences USA, 117(28), 16096–16099. https://doi.org/10.1073/pnas.2010281117
Shorey, M. L. (1909). The effect of the destruction of peripheral areas on the differentiation of the neuroblasts... University of Chicago.
Stoeckli, E. T., & Landmesser, L. T. (1995). Axonin-1, Nr-CAM, and Ng-CAM play different roles in the in vivo guidance of chick commissural neurons. Neuron, 14(6), 1165–1179. https://doi.org/10.1016/0896-6273(95)90264-3
Szeligo, F., & Leblond, C. P. (1977). Response of the three main types of glial cells of cortex and corpus callosum in rats handled during suckling or exposed to enriched control and impoverished environments following weaning. Journal of Comparative Neurology, 172(2), 247–63.
Teicher, M. H., Dumont, N. L., Ito, Y., Vaituzis, C., Giedd, J. N., & Andersen, S. L. (2004). Childhood neglect is associated with reduced corpus callosum area. Biological Psychiatry, 56(2), 80–85. https://doi.org/10.1016/j.biopsych.2004.03.016
Todd, K. L., Kristan, W. B., Jr., & French, K. A. (2010). Gap junction expression is required for normal chemical synapse formation. The Journal of Neuroscience, 30(45), 15277–15285. https://doi.org/10.1523/JNEUROSCI.2331-10.2010
5.4 Experience Dependent Plasticity
Berenguer, M., & Duester, G. (2021). Role of retinoic acid signaling, FGF signaling and meis genes in control of limb development. Biomolecules, 11(1), 80. https://doi.org/10.3390/biom11010080
Berry, K. P., & Nedivi, E. (2016). Experience-dependent structural plasticity in the visual system. Annual Review of Vision Science, 2(1), 17–35. https://doi.org/10.1146/annurev-vision-111815-114638
Denny, L., Coles, S. M., & Blitz, R. (2017). Fetal Alcohol Syndrome and Fetal Alcohol Spectrum Disorders. American Family Physician, 96, 515–522.
De Robertis, E. M. (2009). Spemann’s organizer and the self-regulation of embryonic fields. Mechanisms of Development, 126(11), 925–941. https://doi.org/10.1016/j.mod.2009.08.004
Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: common themes and mechanisms. Annual Review of Neuroscience, 22(1), 567–631. https://doi.org/10.1146/annurev.neuro.22.1.567
Ernst, M. (2014). The triadic model perspective for the study of adolescent motivated behavior. Brain and Cognition, 89, 104-111. https://doi.org/10.1016/j.bandc.2014.01.006
Friedmann, N., & Rusou, D. (2015). Critical period for first language: the crucial role of language input during the first year of life. Current Opinion in Neurobiology, 35, 27–34. https://doi.org/10.1016/j.conb.2015.06.003
Hubel, D. H., & Wiesel, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. The Journal of Physiology, 206(2), 419–436. https://doi.org/10.1113/jphysiol.1970.sp009022
Larsen, B., & Luna, B. (2018). Adolescence as a neurobiological critical period for the development of higher-order cognition. Neuroscience & Biobehavioral Reviews, 94, 179-195. https://doi.org/10.1016/j.neubiorev.2018.09.005
Levelt, C. N., & Hübener, M. (2012). Critical-period plasticity in the visual cortex. Annual Review of Neuroscience, 35, 309–330. https://doi.org/10.1146/annurev-neuro-061010-113813
Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., & Meaney, M. J. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277(5332), 1659-1662. https://doi.org/10.1126/science.277.5332.1659
Meaney, M. J., & Szyf, M. (2022). Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues in Clinical Neuroscience, 7(2), 103–123. https://doi.org/10.31887/DCNS.2005.7.2/mmeaney
Perry, B. D. (2008). Childhood Experience and the Expression of Genetic Potential: What Childhood Neglect Tells Us About Nature and Nurture. Brain and Mind, 3(1), 79.
Pisoni, D. B., Cleary, M., Geers, A. E., & Tobey, E. A. (1999). Individual differences in effectiveness of cochlear implants in children who are prelingually deaf: New process measures of performance. The Volta Review, 101(3), 111–164.
Rymer, R. (1993). Genie: A Scientific Tragedy. HarperPerennial.
Sacks, O. (1985). The man who mistook his wife for a hat and other clinical tales. Summit Books.
Salus, M. W., & Curtiss, S. (1979). Genie: A Psycholinguistic Study of a Modern-Day “Wild Child”. Language, 55(3), 725–726. https://doi.org/10.2307/413340
Spear, L. P. (2000). Neurobehavioral changes in adolescence. Current Directions in Psychological Science, 9(4), 111-114. https://doi.org/10.1111/1467-8721.00072
Stockard, C. R. (1921). Developmental rate and structural expression: An experimental study of twins, “double monsters” and single deformities, and the interaction among embryonic organs during their origin and development. American Journal of Anatomy, 28(2), 115–277. https://doi.org/10.1002/aja.1000280202
Stryker, M. P., & Harris, W. A. (1986). Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. Journal of Neuroscience, 6(8), 2117-2133. https://doi.org/10.1523/jneurosci.06-08-02117.1986
Sulik, K. K., Johnston, M. C., & Webb, M. A. (1981). Fetal Alcohol Syndrome: Embryogenesis in a Mouse Model. Science, 214(4523), 936–938. https://doi.org/10.1126/science.6795717
Tian, N., & Copenhagen, D. R. (2001). Visual deprivation alters development of synaptic function in inner retina after eye opening. Neuron, 32(3), 439–449. https://doi.org/10.1016/S0896-6273(01)00470-6
Vistamehr, S., & Tian, N. (2004). Light deprivation suppresses the light response of inner retina in both young and adult mouse. Visual Neuroscience, 21(1), 23–37. https://doi.org/10.1017/S0952523804041033
Voss, P., Thomas, M. E., Cisneros-Franco, J. M., & de Villers-Sidani, É. (2017). Dynamic brains and the changing rules of neuroplasticity: Implications for learning and recovery. Frontiers in Psychology, 8, 1657. https://doi.org/10.3389/fpsyg.2017.01657
Wiesel, T. N., & Hubel, D. H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26, 1003–1017. https://doi.org/10.1152/jn.1963.26.6.1003
Williams, A. L., & Bohnsack, B. L. (2020). The ocular neural crest: Specification, migration, and then what?. Frontiers in Cell and Developmental Biology, 8, 595896. https://doi.org/10.3389/fcell.2020.595896