19.1 What are the Different Psychological Processes Associated with Attention?
Damasio, A. R. (1999). The feeling of what happens: Body and emotion in the making of consciousness. New York, NY: Harcourt College Publishers.
Hobson, J. A. (1999). Consciousness. Scientific American Library.
Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of experimental psychology, 109(2), 160–174.
Posner, M. I. (1980). Orienting of attention. The Quarterly journal of experimental psychology, 32(1), 3–25. https://doi.org/10.1080/00335558008248231
Schnakers, C. (2020). Update on diagnosis in disorders of consciousness. Expert review of neurotherapeutics, 20(10), 997–1004. https://doi.org/10.1080/14737175.2020.1796641
Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. The Quarterly journal of experimental psychology. A, Human experimental psychology, 40(2), 201–237. https://doi.org/10.1080/02724988843000104
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive psychology, 12(1), 97–136. https://doi.org/10.1016/0010-0285(80)90005-5
van Schie, M. K. M., Lammers, G. J., Fronczek, R., Middelkoop, H. A. M., & van Dijk, J. G. (2021). Vigilance: Discussion of related concepts and proposal for a definition. Sleep medicine, 83, 175–181. https://doi.org/10.1016/j.sleep.2021.04.038
19.2 How is Attention Implemented in the Brain?
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual review of neuroscience, 28, 403–450. https://doi.org/10.1146/annurev.neuro.28.061604.135709
Bremer, F. (1935). Cerveau ‘isolé’ et physiologie du sommeil = The ‘isolated’ brain and the physiology of sleep. Comptes Rendus Des Seances.Société De Biologie Et De Ses Filiales, 118, 1235–1241.
Clark, V. P., & Hillyard, S. A. (1996). Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. Journal of cognitive neuroscience, 8(5), 387–402. https://doi.org/10.1162/jocn.1996.8.5.387
Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature neuroscience, 3(3), 292–297. https://doi.org/10.1038/73009
Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306–324. https://doi.org/10.1016/j.neuron.2008.04.017
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature reviews. Neuroscience, 3(3), 201–215. https://doi.org/10.1038/nrn755
Desimone, R., Wessinger, M., Thomas, L., & Schneider, W. (1990). Attentional control of visual perception: Cortical and subcortical mechanisms. Cold Spring Harbor symposia on quantitative biology, 55, 963–971. https://doi.org/10.1101/sqb.1990.055.01.090
Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature neuroscience, 3(3), 284–291. https://doi.org/10.1038/72999
Kincade, J. M., Abrams, R. A., Astafiev, S. V., Shulman, G. L., & Corbetta, M. (2005). An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. The Journal of neuroscience: The official journal of the Society for Neuroscience, 25(18), 4593–4604. https://doi.org/10.1523/JNEUROSCI.0236-05.2005
Koch, G., Oliveri, M., Torriero, S., & Caltagirone, C. (2005). Modulation of excitatory and inhibitory circuits for visual awareness in the human right parietal cortex. Experimental brain research, 160(4), 510–516. https://doi.org/10.1007/s00221-004-2039-2
Lovejoy, L. P., & Krauzlis, R. J. (2010). Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments. Nature neuroscience, 13(2), 261–266. https://doi.org/10.1038/nn.2470
Mangun, G. R., & Hillyard, S. A. (1991). Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. Journal of experimental psychology. Human perception and performance, 17(4), 1057–1074. https://doi.org/10.1037//0096-1523.17.4.1057
Martínez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J., Wong, E. C., Hinrichs, H., Heinze, H. J., & Hillyard, S. A. (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature neuroscience, 2(4), 364–369. https://doi.org/10.1038/7274
Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science (New York, N.Y.), 229(4715), 782–784. https://doi.org/10.1126/science.4023713
Moruzzi, G., & Magoun, H. W. (1949). Brain stem reticular formation and activation of the EEG. Electroencephalography and clinical neurophysiology, 1(4), 455–473.
Müller, J. R., Philiastides, M. G., & Newsome, W. T. (2005). Microstimulation of the superior colliculus focuses attention without moving the eyes. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 524–529. https://doi.org/10.1073/pnas.0408311101
O'Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401(6753), 584–587. https://doi.org/10.1038/44134
Parvizi, J., & Damasio, A. R. (2003). Neuroanatomical correlates of brainstem coma. Brain: A journal of neurology, 126(Pt 7), 1524–1536. https://doi.org/10.1093/brain/awg166
Rafal, R. D., Posner, M. I., Friedman, J. H., Inhoff, A. W., & Bernstein, E. (1988). Orienting of visual attention in progressive supranuclear palsy. Brain: A journal of neurology, 111(Pt 2), 267–280. https://doi.org/10.1093/brain/111.2.267
Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682. https://doi.org/10.1073/pnas.98.2.676
Robinson, D. L., & Petersen, S. E. (1992). The pulvinar and visual salience. Trends in neurosciences, 15(4), 127–132. https://doi.org/10.1016/0166-2236(92)90354-b
Shinn-Cunningham, B. G. (2008). Object-based auditory and visual attention. Trends in cognitive sciences, 12(5), 182–186. https://doi.org/10.1016/j.tics.2008.02.003
Sparks, D. L. (1999). Conceptual issues related to the role of the superior colliculus in the control of gaze. Current opinion in neurobiology, 9(6), 698–707. https://doi.org/10.1016/s0959-4388(99)00039-2
Wurtz, R. H., Goldberg, M. E., & Robinson, D. L. (1982). Brain mechanisms of visual attention. Scientific American, 246(6), 124–135. https://doi.org/10.1038/scientificamerican0682-124
19.3 What Happens to Unattended Information?
Broadbent, D. E. (1958). Perception and communication. Oxford: Pergamon Press.
Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. Journal of the Acoustical Society of America, 25(5), 975–979.
Deutsch, J. A., & Deutsch, D. (1963). Some theoretical considerations. Psychological review, 70, 80–90. https://doi.org/10.1037/h0039515
Handy, T. C., Soltani, M., & Mangun, G. R. (2001). Perceptual load and visuocortical processing: Event-related potentials reveal sensory-level selection. Psychological science, 12(3), 213–218. https://doi.org/10.1111/1467-9280.00338
Howarth, C. I., & Ellis, K. (1961). The relative intelligibility threshold for one's own name compared with other names. The Quarterly journal of experimental psychology, 13(3), 236–239.
Hyman, I. E., Jr., Sarb, B. A., & Wise-Swanson, B. M. (2014). Failure to see money on a tree: Inattentional blindness for objects that guided behavior. Frontiers in psychology, 5, 356. https://doi.org/10.3389/fpsyg.2014.00356
Hyman, I. E., Jr., Boss, S. M., Wise, B. M., McKenzie, K. E., & Caggiano, J. M. (2010). Did you see the unicycling clown? Inattentional blindness while walking and talking on a cell phone. Applied cognitive psychology, 24(5), 597–607.
Jensen, M. S., Yao, R., Street, W. N., & Simons, D. J. (2011). Change blindness and inattentional blindness. Wiley interdisciplinary reviews. Cognitive science, 2(5), 529–546. https://doi.org/10.1002/wcs.130
Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of experimental psychology. Human perception and performance, 21(3), 451–468. https://doi.org/10.1037//0096-1523.21.3.451
Lavie, N., & Tsal, Y. (1994). Perceptual load as a major determinant of the locus of selection in visual attention. Perception & psychophysics, 56(2), 183–197. https://doi.org/10.3758/bf03213897
Mack, A., & Rock, I. (1998). Inattentional blindness. Cambridge, MA: The MIT Press.
Miller, J. (1991). The flanker compatibility effect as a function of visual angle, attentional focus, visual transients, and perceptual load: A search for boundary conditions. Perception & psychophysics, 49(3), 270–288. https://doi.org/10.3758/bf03214311
Moray, N. (1959). Attention in dichotic listening: Affective cues and the influence of instructions. The Quarterly journal of experimental psychology, 11(1), 56–60.
Schwartz, S., Vuilleumier, P., Hutton, C., Maravita, A., Dolan, R. J., & Driver, J. (2005). Attentional load and sensory competition in human vision: Modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. Cerebral cortex (New York, N.Y.: 1991), 15(6), 770–786. https://doi.org/10.1093/cercor/bhh178
Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception, 28(9), 1059–1074. https://doi.org/10.1068/p281059
Simons, D. J., & Levin, D. T. (1998). Failure to detect changes to people during a real-world interaction. Psychonomic bulletin & review, 5(4), 644–649.
Treisman, A. M. (1960). Contextual cues in selective listening. The Quarterly journal of experimental psychology, 12(3), 242–248.
19.4 What is the Relationship between Attention and Eye Movements?
Bollimunta, A., Bogadhi, A. R., & Krauzlis, R. J. (2018). Comparing frontal eye field and superior colliculus contributions to covert spatial attention. Nature communications, 9(1), 3553. https://doi.org/10.1038/s41467-018-06042-2
Braun, D., Weber, H., Mergner, T., & Schulte-Mönting, J. (1992). Saccadic reaction times in patients with frontal and parietal lesions. Brain: A journal of neurology, 115(Pt 5), 1359–1386. https://doi.org/10.1093/brain/115.5.1359
Bruce, C. J., Goldberg, M. E., Bushnell, M. C., & Stanton, G. B. (1985). Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. Journal of neurophysiology, 54(3), 714–734. https://doi.org/10.1152/jn.1985.54.3.714
Craighero, L., & Rizzolatti, G. (2005). The premotor theory of attention. In L. Itti, G. Rees, & J. K. Tsotsos (Eds.), Neurobiology of attention (pp. 181–186). Cambridge, MA: Academic Press.
Fernández, A., Hanning, N. M., & Carrasco, M. (2023). Transcranial magnetic stimulation to frontal but not occipital cortex disrupts endogenous attention. Proceedings of the National Academy of Sciences of the United States of America, 120(10), e2219635120. https://doi.org/10.1073/pnas.2219635120
Gan, T., Huang, Y., Hao, X., Hu, L., Zheng, Y., & Yang, Z. (2022). Anodal tDCS over the left frontal eye field improves sustained visual search performance. Perception, 51(4), 263–275. https://doi.org/10.1177/03010066221086446
Hunt, A. R., Reuther, J., Hilchey, M. D., & Klein, R. M. (2019). The relationship between spatial attention and eye movements. Current topics in behavioral neurosciences, 41, 255–278. https://doi.org/10.1007/7854_2019_95
Klein, R. M. (1980). Does oculomotor readiness mediate cognitive control of visual attention? In R. Nickerson (Ed.), Attention and performance VIII (pp. 259–276). Cambridge, MA: Academic Press.
Moore, T., & Fallah, M. (2001). Control of eye movements and spatial attention. Proceedings of the National Academy of Sciences of the United States of America, 98(3), 1273–1276. https://doi.org/10.1073/pnas.98.3.1273
Moore, T., & Armstrong, K. M. (2003). Selective gating of visual signals by microstimulation of frontal cortex. Nature, 421(6921), 370–373. https://doi.org/10.1038/nature01341
Morishima, Y., Akaishi, R., Yamada, Y., Okuda, J., Toma, K., & Sakai, K. (2009). Task-specific signal transmission from prefrontal cortex in visual selective attention. Nature neuroscience, 12(1), 85–91. https://doi.org/10.1038/nn.2237
Nobre, A. C., Gitelman, D. R., Dias, E. C., & Mesulam, M. M. (2000). Covert visual spatial orienting and saccades: Overlapping neural systems. NeuroImage, 11(3), 210–216. https://doi.org/10.1006/nimg.2000.0539
Rizzolatti, G., Riggio, L., Dascola, I., & Umiltá, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1A), 31–40. https://doi.org/10.1016/0028-3932(87)90041-8
19.5 How Do Clinical Disorders Affect Attentional Function?
Bartolomeo, P. (2002). The relationship between visual perception and visual mental imagery: A reappraisal of the neuropsychological evidence. Cortex; a journal devoted to the study of the nervous system and behavior, 38(3), 357–378. https://doi.org/10.1016/s0010-9452(08)70665-8
Berti, A., & Rizzolatti, G. (1992). Visual processing without awareness: Evidence from unilateral neglect. Journal of cognitive neuroscience, 4(4), 345–351. https://doi.org/10.1162/jocn.1992.4.4.345
Bisiach, E., & Luzzatti, C. (1978). Unilateral neglect of representational space. Cortex; a journal devoted to the study of the nervous system and behavior, 14(1), 129–133. https://doi.org/10.1016/s0010-9452(78)80016-1
Bitsko, R. H., Claussen, A. H., Lichstein, J., Black, L. I., Jones, S. E., Danielson, M. L., Hoenig, J. M., Davis Jack, S. P., Brody, D. J., Gyawali, S., Maenner, M. J., Warner, M., Holland, K. M., Perou, R., Crosby, A. E., Blumberg, S. J., Avenevoli, S., Kaminski, J. W., & Ghandour, R. M. (2022). Mental health surveillance among children - United States, 2013–2019. MMWR supplements, 71(2), 1–42. https://doi.org/10.15585/mmwr.su7102a1
Bowen, A., McKenna, K., & Tallis, R. C. (1999). Reasons for variability in the reported rate of occurrence of unilateral spatial neglect after stroke. Stroke, 30(6), 1196–1202. https://doi.org/10.1161/01.str.30.6.1196
Brighina, F., Bisiach, E., Oliveri, M., Piazza, A., La Bua, V., Daniele, O., & Fierro, B. (2003). 1 Hz repetitive transcranial magnetic stimulation of the unaffected hemisphere ameliorates contralesional visuospatial neglect in humans. Neuroscience letters, 336(2), 131–133. https://doi.org/10.1016/s0304-3940(02)01283-1
Bush, G. (2010). Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology: Official publication of the American College of Neuropsychopharmacology, 35(1), 278–300. https://doi.org/10.1038/npp.2009.120
Buxbaum, L. J., Ferraro, M. K., Veramonti, T., Farne, A., Whyte, J., Ladavas, E., Frassinetti, F., & Coslett, H. B. (2004). Hemispatial neglect: Subtypes, neuroanatomy, and disability. Neurology, 62(5), 749–756. https://doi.org/10.1212/01.wnl.0000113730.73031.f4
Chen, P., Hreha, K., Gonzalez-Snyder, C., Rich, T. J., Gillen, R. W., Parrott, D., & Barrett, A. M. (2022). Impacts of prism adaptation treatment on spatial neglect and rehabilitation outcome: Dosage matters. Neurorehabilitation and neural repair, 36(8), 500–513. https://doi.org/10.1177/15459683221107891
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature reviews. Neuroscience, 3(3), 201–215. https://doi.org/10.1038/nrn755
Driver, J., & Vuilleumier, P. (2001). Perceptual awareness and its loss in unilateral neglect and extinction. Cognition, 79(1-2), 39–88. https://doi.org/10.1016/s0010-0277(00)00124-4
Farnè, A., Buxbaum, L. J., Ferraro, M., Frassinetti, F., Whyte, J., Veramonti, T., Angeli, V., Coslett, H. B., & Làdavas, E. (2004). Patterns of spontaneous recovery of neglect and associated disorders in acute right brain-damaged patients. Journal of neurology, neurosurgery, and psychiatry, 75(10), 1401–1410. https://doi.org/10.1136/jnnp.2002.003095
Gershon, J. (2002). A meta-analytic review of gender differences in ADHD. Journal of attention disorders, 5(3), 143–154. https://doi.org/10.1177/108705470200500302
Halligan, P. W., & Marshall, J. C. (1991). Left neglect for near but not far space in man. Nature, 350(6318), 498–500. https://doi.org/10.1038/350498a0
Halligan, P. W., Fink, G. R., Marshall, J. C., & Vallar, G. (2003). Spatial cognition: Evidence from visual neglect. Trends in cognitive sciences, 7(3), 125–133. https://doi.org/10.1016/s1364-6613(03)00032-9
Kappel, V., Lorenz, R. C., Streifling, M., Renneberg, B., Lehmkuhl, U., Ströhle, A., Salbach-Andrae, H., & Beck, A. (2015). Effect of brain structure and function on reward anticipation in children and adults with attention deficit hyperactivity disorder combined subtype. Social cognitive and affective neuroscience, 10(7), 945–951. https://doi.org/10.1093/scan/nsu135
Kim, M., Na, D. L., Kim, G. M., Adair, J. C., Lee, K. H., & Heilman, K. M. (1999). Ipsilesional neglect: Behavioural and anatomical features. Journal of neurology, neurosurgery, and psychiatry, 67(1), 35–38. https://doi.org/10.1136/jnnp.67.1.35
Kinsbourne, M. (1987). Mechanisms of unilateral neglect. In M. Jeannerod (Ed.), Neurophysiological and neuropsychological aspects of spatial neglect (pp. 69–86). New York: Elsevier Science.
Lei, D., Du, M., Wu, M., Chen, T., Huang, X., Du, X., Bi, F., Kemp, G. J., & Gong, Q. (2015). Functional MRI reveals different response inhibition between adults and children with ADHD. Neuropsychology, 29(6), 874–881. https://doi.org/10.1037/neu0000200
Luauté, J., Halligan, P., Rode, G., Rossetti, Y., & Boisson, D. (2006). Visuo-spatial neglect: A systematic review of current interventions and their effectiveness. Neuroscience and biobehavioral reviews, 30(7), 961–982. https://doi.org/10.1016/j.neubiorev.2006.03.001
Marshall, J. C., & Halligan, P. W. (1988). Blindsight and insight in visuo-spatial neglect. Nature, 336(6201), 766–767. https://doi.org/10.1038/336766a0
Marshall, J. C., & Halligan, P. W. (1993). Visuo-spatial neglect: A new copying test to assess perceptual parsing. Journal of neurology, 240(1), 37–40. https://doi.org/10.1007/BF00838444
Mort, D. J., Malhotra, P., Mannan, S. K., Rorden, C., Pambakian, A., Kennard, C., & Husain, M. (2003). The anatomy of visual neglect. Brain: A journal of neurology, 126(Pt 9), 1986–1997. https://doi.org/10.1093/brain/awg200
Mowlem, F., Agnew-Blais, J., Taylor, E., & Asherson, P. (2019). Do different factors influence whether girls versus boys meet ADHD diagnostic criteria? Sex differences among children with high ADHD symptoms. Psychiatry research, 272, 765–773. https://doi.org/10.1016/j.psychres.2018.12.128
Müri, R. M., Cazzoli, D., Nef, T., Mosimann, U. P., Hopfner, S., & Nyffeler, T. (2013). Non-invasive brain stimulation in neglect rehabilitation: An update. Frontiers in human neuroscience, 7, 248. https://doi.org/10.3389/fnhum.2013.00248
Ortigue, S., Mégevand, P., Perren, F., Landis, T., & Blanke, O. (2006). Double dissociation between representational personal and extrapersonal neglect. Neurology, 66(9), 1414–1417. https://doi.org/10.1212/01.wnl.0000210440.49932.e7
Parton, A., Malhotra, P., & Husain, M. (2004). Hemispatial neglect. Journal of neurology, neurosurgery, and psychiatry, 75(1), 13–21.
Rafal, R. D. (1994). Neglect. Current opinion in neurobiology, 4(2), 231–236. https://doi.org/10.1016/0959-4388(94)90078-7
Rees, G., Wojciulik, E., Clarke, K., Husain, M., Frith, C., & Driver, J. (2000). Unconscious activation of visual cortex in the damaged right hemisphere of a parietal patient with extinction. Brain: A journal of neurology, 123(Pt 8), 1624–1633. https://doi.org/10.1093/brain/123.8.1624
Riddoch, M. J., Chechlacz, M., Mevorach, C., Mavritsaki, E., Allen, H., & Humphreys, G. W. (2010). The neural mechanisms of visual selection: The view from neuropsychology. Annals of the New York Academy of Sciences, 1191, 156–181. https://doi.org/10.1111/j.1749-6632.2010.05448.x
Robertson, L. C. (2004). Space, objects, minds, and brains. New York: Psychology Press.
Rode, G., Charles, N., Perenin, M. T., Vighetto, A., Trillet, M., & Aimard, G. (1992). Partial remission of hemiplegia and somatoparaphrenia through vestibular stimulation in a case of unilateral neglect. Cortex; a journal devoted to the study of the nervous system and behavior, 28(2), 203–208. https://doi.org/10.1016/s0010-9452(13)80048-2
Rossetti, Y., Rode, G., Pisella, L., Farné, A., Li, L., Boisson, D., & Perenin, M. T. (1998). Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature, 395(6698), 166–169. https://doi.org/10.1038/25988
Rubens, A. B. (1985). Caloric stimulation and unilateral visual neglect. Neurology, 35(7), 1019–1024. https://doi.org/10.1212/wnl.35.7.1019
Rubia, K. (2018). Cognitive neuroscience of attention deficit hyperactivity disorder (ADHD) and its clinical translation. Frontiers in human neuroscience, 12, 100. https://doi.org/10.3389/fnhum.2018.00100
Shaw, P., Lerch, J., Greenstein, D., Sharp, W., Clasen, L., Evans, A., Giedd, J., Castellanos, F. X., & Rapoport, J. (2006). Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Archives of general psychiatry, 63(5), 540–549. https://doi.org/10.1001/archpsyc.63.5.540
Siviy, S. M., & Panksepp, J. (2011). In search of the neurobiological substrates for social playfulness in mammalian brains. Neuroscience and biobehavioral reviews, 35(9), 1821–1830. https://doi.org/10.1016/j.neubiorev.2011.03.006
Umeonwuka, C., Roos, R., & Ntsiea, V. (2022). Current trends in the treatment of patients with post-stroke unilateral spatial neglect: A scoping review. Disability and rehabilitation, 44(11), 2158–2185. https://doi.org/10.1080/09638288.2020.1824026
Valera, E. M., Faraone, S. V., Murray, K. E., & Seidman, L. J. (2007). Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biological psychiatry, 61(12), 1361–1369. https://doi.org/10.1016/j.biopsych.2006.06.011
van der Marel, K., Klomp, A., Meerhoff, G. F., Schipper, P., Lucassen, P. J., Homberg, J. R., Dijkhuizen, R. M., & Reneman, L. (2014). Long-term oral methylphenidate treatment in adolescent and adult rats: Differential effects on brain morphology and function. Neuropsychopharmacology: Official publication of the American College of Neuropsychopharmacology, 39(2), 263–273. https://doi.org/10.1038/npp.2013.169
Vuilleumier, P., Valenza, N., Mayer, E., Reverdin, A., & Landis, T. (1998). Near and far visual space in unilateral neglect. Annals of neurology, 43(3), 406–410. https://doi.org/10.1002/ana.410430324
Vysniauske, R., Verburgh, L., Oosterlaan, J., & Molendijk, M. L. (2020). The effects of physical exercise on functional outcomes in the treatment of ADHD: A meta-analysis. Journal of attention disorders, 24(5), 644–654. https://doi.org/10.1177/1087054715627489
19.6 How Do We Use Executive Functions to Make Decisions and Achieve Goals?
Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology review, 16(1), 17–42. https://doi.org/10.1007/s11065-006-9002-x
Ambrosini, E., Arbula, S., Rossato, C., Pacella, V., & Vallesi, A. (2019). Neuro-cognitive architecture of executive functions: A latent variable analysis. Cortex; a journal devoted to the study of the nervous system and behavior, 119, 441–456. https://doi.org/10.1016/j.cortex.2019.07.013
Andreasen, N. C., Rezai, K., Alliger, R., Swayze, V. W., 2nd, Flaum, M., Kirchner, P., Cohen, G., & O'Leary, D. S. (1992). Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Archives of general psychiatry, 49(12), 943–958. https://doi.org/10.1001/archpsyc.1992.01820120031006
Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature neuroscience, 6(2), 115–116. https://doi.org/10.1038/nn1003
Badre, D., & D'Esposito, M. (2009). Is the rostro-caudal axis of the frontal lobe hierarchical?. Nature reviews. Neuroscience, 10(9), 659–669. https://doi.org/10.1038/nrn2667
Banich, M. T. (2019). The Stroop effect occurs at multiple points along a cascade of control: Evidence from cognitive neuroscience approaches. Frontiers in psychology, 10, 2164. https://doi.org/10.3389/fpsyg.2019.02164
Bilder, R. M., Goldman, R. S., Volavka, J., Czobor, P., Hoptman, M., Sheitman, B., Lindenmayer, J. P., Citrome, L., McEvoy, J., Kunz, M., Chakos, M., Cooper, T. B., Horowitz, T. L., & Lieberman, J. A. (2002). Neurocognitive effects of clozapine, olanzapine, risperidone, and haloperidol in patients with chronic schizophrenia or schizoaffective disorder. The American journal of psychiatry, 159(6), 1018–1028. https://doi.org/10.1176/appi.ajp.159.6.1018
Birrell, J. M., & Brown, V. J. (2000). Medial frontal cortex mediates perceptual attentional set shifting in the rat. The Journal of neuroscience: The official journal of the Society for Neuroscience, 20(11), 4320–4324. https://doi.org/10.1523/JNEUROSCI.20-11-04320.2000
Bortz, D. M., Feistritzer, C. M., & Grace, A. A. (2023). Medial prefrontal cortex to medial septum pathway activation improves cognitive flexibility in rats. The international journal of neuropsychopharmacology, 26(6), 426–437. https://doi.org/10.1093/ijnp/pyad019
Bowie, C. R., & Harvey, P. D. (2006). Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatric disease and treatment, 2(4), 531–536. https://doi.org/10.2147/nedt.2006.2.4.531
Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., & Damasio, A. R. (1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science (New York, N.Y.), 264(5162), 1102–1105. https://doi.org/10.1126/science.8178168
Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological science, 5, 303–305.
D'Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Brain research. Cognitive brain research, 7(1), 1–13. https://doi.org/10.1016/s0926-6410(98)00004-4
Dias, R., Robbins, T. W., & Roberts, A. C. (1996). Primate analogue of the Wisconsin Card Sorting Test: Effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behavioral neuroscience, 110(5), 872–886. https://doi.org/10.1037//0735-7044.110.5.872
Dias, R., Robbins, T. W., & Roberts, A. C. (1997). Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: Restriction to novel situations and independence from "on-line" processing. The Journal of neuroscience: The official journal of the Society for Neuroscience, 17(23), 9285–9297. https://doi.org/10.1523/JNEUROSCI.17-23-09285.1997
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & psychophysics, 16, 143–149.
Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography and clinical neurophysiology, 78(6), 447–455. https://doi.org/10.1016/0013-4694(91)90062-9
Fisher, B. M., Saksida, L. M., Robbins, T. W., & Bussey, T. J. (2020). Functional dissociations between subregions of the medial prefrontal cortex on the rodent touchscreen continuous performance test (rCPT) of attention. Behavioral neuroscience, 134(1), 1–14. https://doi.org/10.1037/bne0000338
Friedman, N. P., & Robbins, T. W. (2022). The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology: Official publication of the American College of Neuropsychopharmacology, 47(1), 72–89. https://doi.org/10.1038/s41386-021-01132-0
Gaebel, W., Stricker, J., & Riesbeck, M. (2020). The long-term antipsychotic treatment of schizophrenia: A selective review of clinical guidelines and clinical case examples. Schizophrenia research, 225, 4–14. https://doi.org/10.1016/j.schres.2019.10.049
Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (2018). The error-related negativity. Perspectives on psychological science: A journal of the Association for Psychological Science, 13(2), 200–204. https://doi.org/10.1177/1745691617715310
Goldstein, B., Obrzut, J. E., John, C., Ledakis, G., & Armstrong, C. L. (2004). The impact of frontal and non-frontal brain tumor lesions on Wisconsin Card Sorting Test performance. Brain and cognition, 54(2), 110–116. https://doi.org/10.1016/S0278-2626(03)00269-0
Hoshi, Y., Shinba, T., Sato, C., & Doi, N. (2006). Resting hypofrontality in schizophrenia: A study using near-infrared time-resolved spectroscopy. Schizophrenia research, 84(2–3), 411–420. https://doi.org/10.1016/j.schres.2006.03.010
Hung, Y., Gaillard, S. L., Yarmak, P., & Arsalidou, M. (2018). Dissociations of cognitive inhibition, response inhibition, and emotional interference: Voxelwise ALE meta-analyses of fMRI studies. Human brain mapping, 39(10), 4065–4082. https://doi.org/10.1002/hbm.24232
Hutchison, K. A., Balota, D. A., & Duchek, J. M. (2010). The utility of Stroop task switching as a marker for early-stage Alzheimer's disease. Psychology and aging, 25(3), 545–559. https://doi.org/10.1037/a0018498
Kahn, R. S., Sommer, I. E., Murray, R. M., Meyer-Lindenberg, A., Weinberger, D. R., Cannon, T. D., O'Donovan, M., Correll, C. U., Kane, J. M., van Os, J., & Insel, T. R. (2015). Schizophrenia. Nature reviews. Disease primers, 1, 15067. https://doi.org/10.1038/nrdp.2015.67
Kaller, C. P., Heinze, K., Frenkel, A., Läppchen, C. H., Unterrainer, J. M., Weiller, C., Lange, R., & Rahm, B. (2013). Differential impact of continuous theta-burst stimulation over left and right DLPFC on planning. Human brain mapping, 34(1), 36–51. https://doi.org/10.1002/hbm.21423
Kumada, T., & Humphreys, G. W. (2006). Dimensional weighting and task switching following frontal lobe damage: Fractionating the task switching deficit. Cognitive neuropsychology, 23(3), 424–457. https://doi.org/10.1080/02643290542000058
Lappin, J. S., & Eriksen, C. W. (1966). Use of a delayed signal to stop a visual reaction-time response. Journal of experimental psychology, 72, 805–811.
Lazeron, R. H., Rombouts, S. A., Machielsen, W. C., Scheltens, P., Witter, M. P., Uylings, H. B., & Barkhof, F. (2000). Visualizing brain activation during planning: The tower of London test adapted for functional MR imaging. AJNR. American journal of neuroradiology, 21(8), 1407–1414.
Lhermitte, F. (1986). Human autonomy and the frontal lobes. Part II: Patient behavior in complex and social situations: The "environmental dependency syndrome". Annals of neurology, 19(4), 335–343. https://doi.org/10.1002/ana.410190405
Lie, C. H., Specht, K., Marshall, J. C., & Fink, G. R. (2006). Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. NeuroImage, 30(3), 1038–1049. https://doi.org/10.1016/j.neuroimage.2005.10.031
McGaughy, J., Ross, R. S., & Eichenbaum, H. (2008). Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience, 153(1), 63–71. https://doi.org/10.1016/j.neuroscience.2008.01.064
Mehta, M. A., Sahakian, B. J., McKenna, P. J., & Robbins, T. W. (1999). Systemic sulpiride in young adult volunteers simulates the profile of cognitive deficits in Parkinson's disease. Psychopharmacology, 146(2), 162–174. https://doi.org/10.1007/s002130051102
Menon, V., & D'Esposito, M. (2022). The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology: Official publication of the American College of Neuropsychopharmacology, 47(1), 90–103. https://doi.org/10.1038/s41386-021-01152-w
Milner, B. (1963). Effects of different brain lesions on card sorting: The role of the frontal lobes. Archives of neurology, 9, 90–100.
Monchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, A. (2001). Wisconsin Card Sorting revisited: Distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. The Journal of neuroscience: The official journal of the Society for Neuroscience, 21(19), 7733–7741. https://doi.org/10.1523/JNEUROSCI.21-19-07733.2001
Monsell, S. (2003). Task switching. Trends in cognitive sciences, 7(3), 134–140. https://doi.org/10.1016/s1364-6613(03)00028-7
Nyhus, E., & Barceló, F. (2009). The Wisconsin Card Sorting Test and the cognitive assessment of prefrontal executive functions: A critical update. Brain and cognition, 71(3), 437–451. https://doi.org/10.1016/j.bandc.2009.03.005
Olguin, S. L., Cavanagh, J. F., Young, J. W., & Brigman, J. L. (2023). Impaired cognitive control after moderate prenatal alcohol exposure corresponds to altered EEG power during a rodent touchscreen continuous performance task. Neuropharmacology, 236, 109599. https://doi.org/10.1016/j.neuropharm.2023.109599
Ott, T., & Nieder, A. (2019). Dopamine and cognitive control in prefrontal cortex. Trends in cognitive sciences, 23(3), 213–234. https://doi.org/10.1016/j.tics.2018.12.006
Perret, E. (1974). The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. Neuropsychologia, 12(3), 323–330. https://doi.org/10.1016/0028-3932(74)90047-5
Polgár, P., Réthelyi, J. M., Bálint, S., Komlósi, S., Czobor, P., & Bitter, I. (2010). Executive function in deficit schizophrenia: What do the dimensions of the Wisconsin Card Sorting Test tell us?. Schizophrenia research, 122(1-3), 85–93. https://doi.org/10.1016/j.schres.2010.06.007
Ragozzino, M. E. (2007). The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Annals of the New York Academy of Sciences, 1121, 355–375. https://doi.org/10.1196/annals.1401.013
Ravizza, S. M., & Carter, C. S. (2008). Shifting set about task switching: Behavioral and neural evidence for distinct forms of cognitive flexibility. Neuropsychologia, 46(12), 2924–2935. https://doi.org/10.1016/j.neuropsychologia.2008.06.006
Riehemann, S., Volz, H. P., Stützer, P., Smesny, S., Gaser, C., & Sauer, H. (2001). Hypofrontality in neuroleptic-naive schizophrenic patients during the Wisconsin Card Sorting Test--a fMRI study. European archives of psychiatry and clinical neuroscience, 251(2), 66–71. https://doi.org/10.1007/s004060170055
Robbins, T. W., & Arnsten, A. F. (2009). The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation. Annual review of neuroscience, 32, 267–287. https://doi.org/10.1146/annurev.neuro.051508.135535
Rogers, R. D., Sahakian, B. J., Hodges, J. R., Polkey, C. E., Kennard, C., & Robbins, T. W. (1998). Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson's disease. Brain: A journal of neurology, 121(Pt 5), 815–842. https://doi.org/10.1093/brain/121.5.815
Spark, D. L., Fornito, A., Langmead, C. J., & Stewart, G. D. (2022). Beyond antipsychotics: A twenty-first century update for preclinical development of schizophrenia therapeutics. Translational psychiatry, 12(1), 147. https://doi.org/10.1038/s41398-022-01904-2
Wang, T., Guo, M., Wang, N., Zhai, H., Wang, Z., & Xu, G. (2023). Effects of theta burst stimulation on the coherence of local field potential during working memory task in rats. Brain research, 1813, 148408. https://doi.org/10.1016/j.brainres.2023.148408
Yang, A. C., & Tsai, S. J. (2017). New targets for schizophrenia treatment beyond the dopamine hypothesis. International journal of molecular sciences, 18(8), 1689. https://doi.org/10.3390/ijms18081689