Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

19.1 What are the Different Psychological Processes Associated with Attention?

Damasio, A. R. (1999). The feeling of what happens: Body and emotion in the making of consciousness. New York, NY: Harcourt College Publishers.

Hobson, J. A. (1999). Consciousness. Scientific American Library.

Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of experimental psychology, 109(2), 160–174.

Posner, M. I. (1980). Orienting of attention. The Quarterly journal of experimental psychology, 32(1), 3–25. https://doi.org/10.1080/00335558008248231

Schnakers, C. (2020). Update on diagnosis in disorders of consciousness. Expert review of neurotherapeutics, 20(10), 997–1004. https://doi.org/10.1080/14737175.2020.1796641

Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. The Quarterly journal of experimental psychology. A, Human experimental psychology, 40(2), 201–237. https://doi.org/10.1080/02724988843000104

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive psychology, 12(1), 97–136. https://doi.org/10.1016/0010-0285(80)90005-5

van Schie, M. K. M., Lammers, G. J., Fronczek, R., Middelkoop, H. A. M., & van Dijk, J. G. (2021). Vigilance: Discussion of related concepts and proposal for a definition. Sleep medicine, 83, 175–181. https://doi.org/10.1016/j.sleep.2021.04.038

19.2 How is Attention Implemented in the Brain?

Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual review of neuroscience, 28, 403–450. https://doi.org/10.1146/annurev.neuro.28.061604.135709

Bremer, F. (1935). Cerveau ‘isolé’ et physiologie du sommeil = The ‘isolated’ brain and the physiology of sleep. Comptes Rendus Des Seances.Société De Biologie Et De Ses Filiales, 118, 1235–1241.

Clark, V. P., & Hillyard, S. A. (1996). Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. Journal of cognitive neuroscience, 8(5), 387–402. https://doi.org/10.1162/jocn.1996.8.5.387

Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P., & Shulman, G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature neuroscience, 3(3), 292–297. https://doi.org/10.1038/73009

Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58(3), 306–324. https://doi.org/10.1016/j.neuron.2008.04.017

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature reviews. Neuroscience, 3(3), 201–215. https://doi.org/10.1038/nrn755

Desimone, R., Wessinger, M., Thomas, L., & Schneider, W. (1990). Attentional control of visual perception: Cortical and subcortical mechanisms. Cold Spring Harbor symposia on quantitative biology, 55, 963–971. https://doi.org/10.1101/sqb.1990.055.01.090

Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature neuroscience, 3(3), 284–291. https://doi.org/10.1038/72999

Kincade, J. M., Abrams, R. A., Astafiev, S. V., Shulman, G. L., & Corbetta, M. (2005). An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. The Journal of neuroscience: The official journal of the Society for Neuroscience, 25(18), 4593–4604. https://doi.org/10.1523/JNEUROSCI.0236-05.2005

Koch, G., Oliveri, M., Torriero, S., & Caltagirone, C. (2005). Modulation of excitatory and inhibitory circuits for visual awareness in the human right parietal cortex. Experimental brain research, 160(4), 510–516. https://doi.org/10.1007/s00221-004-2039-2

Lovejoy, L. P., & Krauzlis, R. J. (2010). Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments. Nature neuroscience, 13(2), 261–266. https://doi.org/10.1038/nn.2470

Mangun, G. R., & Hillyard, S. A. (1991). Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. Journal of experimental psychology. Human perception and performance, 17(4), 1057–1074. https://doi.org/10.1037//0096-1523.17.4.1057

Martínez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J., Wong, E. C., Hinrichs, H., Heinze, H. J., & Hillyard, S. A. (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature neuroscience, 2(4), 364–369. https://doi.org/10.1038/7274

Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science (New York, N.Y.), 229(4715), 782–784. https://doi.org/10.1126/science.4023713

Moruzzi, G., & Magoun, H. W. (1949). Brain stem reticular formation and activation of the EEG. Electroencephalography and clinical neurophysiology, 1(4), 455–473.

Müller, J. R., Philiastides, M. G., & Newsome, W. T. (2005). Microstimulation of the superior colliculus focuses attention without moving the eyes. Proceedings of the National Academy of Sciences of the United States of America, 102(3), 524–529. https://doi.org/10.1073/pnas.0408311101

O'Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401(6753), 584–587. https://doi.org/10.1038/44134

Parvizi, J., & Damasio, A. R. (2003). Neuroanatomical correlates of brainstem coma. Brain: A journal of neurology, 126(Pt 7), 1524–1536. https://doi.org/10.1093/brain/awg166

Rafal, R. D., Posner, M. I., Friedman, J. H., Inhoff, A. W., & Bernstein, E. (1988). Orienting of visual attention in progressive supranuclear palsy. Brain: A journal of neurology, 111(Pt 2), 267–280. https://doi.org/10.1093/brain/111.2.267

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682. https://doi.org/10.1073/pnas.98.2.676

Robinson, D. L., & Petersen, S. E. (1992). The pulvinar and visual salience. Trends in neurosciences, 15(4), 127–132. https://doi.org/10.1016/0166-2236(92)90354-b

Shinn-Cunningham, B. G. (2008). Object-based auditory and visual attention. Trends in cognitive sciences, 12(5), 182–186. https://doi.org/10.1016/j.tics.2008.02.003

Sparks, D. L. (1999). Conceptual issues related to the role of the superior colliculus in the control of gaze. Current opinion in neurobiology, 9(6), 698–707. https://doi.org/10.1016/s0959-4388(99)00039-2

Wurtz, R. H., Goldberg, M. E., & Robinson, D. L. (1982). Brain mechanisms of visual attention. Scientific American, 246(6), 124–135. https://doi.org/10.1038/scientificamerican0682-124

19.3 What Happens to Unattended Information?

Broadbent, D. E. (1958). Perception and communication. Oxford: Pergamon Press.

Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. Journal of the Acoustical Society of America, 25(5), 975–979.

Deutsch, J. A., & Deutsch, D. (1963). Some theoretical considerations. Psychological review, 70, 80–90. https://doi.org/10.1037/h0039515

Handy, T. C., Soltani, M., & Mangun, G. R. (2001). Perceptual load and visuocortical processing: Event-related potentials reveal sensory-level selection. Psychological science, 12(3), 213–218. https://doi.org/10.1111/1467-9280.00338

Howarth, C. I., & Ellis, K. (1961). The relative intelligibility threshold for one's own name compared with other names. The Quarterly journal of experimental psychology, 13(3), 236–239.

Hyman, I. E., Jr., Sarb, B. A., & Wise-Swanson, B. M. (2014). Failure to see money on a tree: Inattentional blindness for objects that guided behavior. Frontiers in psychology, 5, 356. https://doi.org/10.3389/fpsyg.2014.00356

Hyman, I. E., Jr., Boss, S. M., Wise, B. M., McKenzie, K. E., & Caggiano, J. M. (2010). Did you see the unicycling clown? Inattentional blindness while walking and talking on a cell phone. Applied cognitive psychology, 24(5), 597–607.

Jensen, M. S., Yao, R., Street, W. N., & Simons, D. J. (2011). Change blindness and inattentional blindness. Wiley interdisciplinary reviews. Cognitive science, 2(5), 529–546. https://doi.org/10.1002/wcs.130

Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of experimental psychology. Human perception and performance, 21(3), 451–468. https://doi.org/10.1037//0096-1523.21.3.451

Lavie, N., & Tsal, Y. (1994). Perceptual load as a major determinant of the locus of selection in visual attention. Perception & psychophysics, 56(2), 183–197. https://doi.org/10.3758/bf03213897

Mack, A., & Rock, I. (1998). Inattentional blindness. Cambridge, MA: The MIT Press.

Miller, J. (1991). The flanker compatibility effect as a function of visual angle, attentional focus, visual transients, and perceptual load: A search for boundary conditions. Perception & psychophysics, 49(3), 270–288. https://doi.org/10.3758/bf03214311

Moray, N. (1959). Attention in dichotic listening: Affective cues and the influence of instructions. The Quarterly journal of experimental psychology, 11(1), 56–60.

Schwartz, S., Vuilleumier, P., Hutton, C., Maravita, A., Dolan, R. J., & Driver, J. (2005). Attentional load and sensory competition in human vision: Modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. Cerebral cortex (New York, N.Y.: 1991), 15(6), 770–786. https://doi.org/10.1093/cercor/bhh178

Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception, 28(9), 1059–1074. https://doi.org/10.1068/p281059

Simons, D. J., & Levin, D. T. (1998). Failure to detect changes to people during a real-world interaction. Psychonomic bulletin & review, 5(4), 644–649.

Treisman, A. M. (1960). Contextual cues in selective listening. The Quarterly journal of experimental psychology, 12(3), 242–248.

19.4 What is the Relationship between Attention and Eye Movements?

Bollimunta, A., Bogadhi, A. R., & Krauzlis, R. J. (2018). Comparing frontal eye field and superior colliculus contributions to covert spatial attention. Nature communications, 9(1), 3553. https://doi.org/10.1038/s41467-018-06042-2

Braun, D., Weber, H., Mergner, T., & Schulte-Mönting, J. (1992). Saccadic reaction times in patients with frontal and parietal lesions. Brain: A journal of neurology, 115(Pt 5), 1359–1386. https://doi.org/10.1093/brain/115.5.1359

Bruce, C. J., Goldberg, M. E., Bushnell, M. C., & Stanton, G. B. (1985). Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. Journal of neurophysiology, 54(3), 714–734. https://doi.org/10.1152/jn.1985.54.3.714

Craighero, L., & Rizzolatti, G. (2005). The premotor theory of attention. In L. Itti, G. Rees, & J. K. Tsotsos (Eds.), Neurobiology of attention (pp. 181–186). Cambridge, MA: Academic Press.

Fernández, A., Hanning, N. M., & Carrasco, M. (2023). Transcranial magnetic stimulation to frontal but not occipital cortex disrupts endogenous attention. Proceedings of the National Academy of Sciences of the United States of America, 120(10), e2219635120. https://doi.org/10.1073/pnas.2219635120

Gan, T., Huang, Y., Hao, X., Hu, L., Zheng, Y., & Yang, Z. (2022). Anodal tDCS over the left frontal eye field improves sustained visual search performance. Perception, 51(4), 263–275. https://doi.org/10.1177/03010066221086446

Hunt, A. R., Reuther, J., Hilchey, M. D., & Klein, R. M. (2019). The relationship between spatial attention and eye movements. Current topics in behavioral neurosciences, 41, 255–278. https://doi.org/10.1007/7854_2019_95

Klein, R. M. (1980). Does oculomotor readiness mediate cognitive control of visual attention? In R. Nickerson (Ed.), Attention and performance VIII (pp. 259–276). Cambridge, MA: Academic Press.

Moore, T., & Fallah, M. (2001). Control of eye movements and spatial attention. Proceedings of the National Academy of Sciences of the United States of America, 98(3), 1273–1276. https://doi.org/10.1073/pnas.98.3.1273

Moore, T., & Armstrong, K. M. (2003). Selective gating of visual signals by microstimulation of frontal cortex. Nature, 421(6921), 370–373. https://doi.org/10.1038/nature01341

Morishima, Y., Akaishi, R., Yamada, Y., Okuda, J., Toma, K., & Sakai, K. (2009). Task-specific signal transmission from prefrontal cortex in visual selective attention. Nature neuroscience, 12(1), 85–91. https://doi.org/10.1038/nn.2237

Nobre, A. C., Gitelman, D. R., Dias, E. C., & Mesulam, M. M. (2000). Covert visual spatial orienting and saccades: Overlapping neural systems. NeuroImage, 11(3), 210–216. https://doi.org/10.1006/nimg.2000.0539

Rizzolatti, G., Riggio, L., Dascola, I., & Umiltá, C. (1987). Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1A), 31–40. https://doi.org/10.1016/0028-3932(87)90041-8

19.5 How Do Clinical Disorders Affect Attentional Function?

Bartolomeo, P. (2002). The relationship between visual perception and visual mental imagery: A reappraisal of the neuropsychological evidence. Cortex; a journal devoted to the study of the nervous system and behavior, 38(3), 357–378. https://doi.org/10.1016/s0010-9452(08)70665-8

Berti, A., & Rizzolatti, G. (1992). Visual processing without awareness: Evidence from unilateral neglect. Journal of cognitive neuroscience, 4(4), 345–351. https://doi.org/10.1162/jocn.1992.4.4.345

Bisiach, E., & Luzzatti, C. (1978). Unilateral neglect of representational space. Cortex; a journal devoted to the study of the nervous system and behavior, 14(1), 129–133. https://doi.org/10.1016/s0010-9452(78)80016-1

Bitsko, R. H., Claussen, A. H., Lichstein, J., Black, L. I., Jones, S. E., Danielson, M. L., Hoenig, J. M., Davis Jack, S. P., Brody, D. J., Gyawali, S., Maenner, M. J., Warner, M., Holland, K. M., Perou, R., Crosby, A. E., Blumberg, S. J., Avenevoli, S., Kaminski, J. W., & Ghandour, R. M. (2022). Mental health surveillance among children - United States, 2013–2019. MMWR supplements, 71(2), 1–42. https://doi.org/10.15585/mmwr.su7102a1

Bowen, A., McKenna, K., & Tallis, R. C. (1999). Reasons for variability in the reported rate of occurrence of unilateral spatial neglect after stroke. Stroke, 30(6), 1196–1202. https://doi.org/10.1161/01.str.30.6.1196

Brighina, F., Bisiach, E., Oliveri, M., Piazza, A., La Bua, V., Daniele, O., & Fierro, B. (2003). 1 Hz repetitive transcranial magnetic stimulation of the unaffected hemisphere ameliorates contralesional visuospatial neglect in humans. Neuroscience letters, 336(2), 131–133. https://doi.org/10.1016/s0304-3940(02)01283-1

Bush, G. (2010). Attention-deficit/hyperactivity disorder and attention networks. Neuropsychopharmacology: Official publication of the American College of Neuropsychopharmacology, 35(1), 278–300. https://doi.org/10.1038/npp.2009.120

Buxbaum, L. J., Ferraro, M. K., Veramonti, T., Farne, A., Whyte, J., Ladavas, E., Frassinetti, F., & Coslett, H. B. (2004). Hemispatial neglect: Subtypes, neuroanatomy, and disability. Neurology, 62(5), 749–756. https://doi.org/10.1212/01.wnl.0000113730.73031.f4

Chen, P., Hreha, K., Gonzalez-Snyder, C., Rich, T. J., Gillen, R. W., Parrott, D., & Barrett, A. M. (2022). Impacts of prism adaptation treatment on spatial neglect and rehabilitation outcome: Dosage matters. Neurorehabilitation and neural repair, 36(8), 500–513. https://doi.org/10.1177/15459683221107891

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature reviews. Neuroscience, 3(3), 201–215. https://doi.org/10.1038/nrn755

Driver, J., & Vuilleumier, P. (2001). Perceptual awareness and its loss in unilateral neglect and extinction. Cognition, 79(1-2), 39–88. https://doi.org/10.1016/s0010-0277(00)00124-4

Farnè, A., Buxbaum, L. J., Ferraro, M., Frassinetti, F., Whyte, J., Veramonti, T., Angeli, V., Coslett, H. B., & Làdavas, E. (2004). Patterns of spontaneous recovery of neglect and associated disorders in acute right brain-damaged patients. Journal of neurology, neurosurgery, and psychiatry, 75(10), 1401–1410. https://doi.org/10.1136/jnnp.2002.003095

Gershon, J. (2002). A meta-analytic review of gender differences in ADHD. Journal of attention disorders, 5(3), 143–154. https://doi.org/10.1177/108705470200500302

Halligan, P. W., & Marshall, J. C. (1991). Left neglect for near but not far space in man. Nature, 350(6318), 498–500. https://doi.org/10.1038/350498a0

Halligan, P. W., Fink, G. R., Marshall, J. C., & Vallar, G. (2003). Spatial cognition: Evidence from visual neglect. Trends in cognitive sciences, 7(3), 125–133. https://doi.org/10.1016/s1364-6613(03)00032-9

Kappel, V., Lorenz, R. C., Streifling, M., Renneberg, B., Lehmkuhl, U., Ströhle, A., Salbach-Andrae, H., & Beck, A. (2015). Effect of brain structure and function on reward anticipation in children and adults with attention deficit hyperactivity disorder combined subtype. Social cognitive and affective neuroscience, 10(7), 945–951. https://doi.org/10.1093/scan/nsu135

Kim, M., Na, D. L., Kim, G. M., Adair, J. C., Lee, K. H., & Heilman, K. M. (1999). Ipsilesional neglect: Behavioural and anatomical features. Journal of neurology, neurosurgery, and psychiatry, 67(1), 35–38. https://doi.org/10.1136/jnnp.67.1.35

Kinsbourne, M. (1987). Mechanisms of unilateral neglect. In M. Jeannerod (Ed.), Neurophysiological and neuropsychological aspects of spatial neglect (pp. 69–86). New York: Elsevier Science.

Lei, D., Du, M., Wu, M., Chen, T., Huang, X., Du, X., Bi, F., Kemp, G. J., & Gong, Q. (2015). Functional MRI reveals different response inhibition between adults and children with ADHD. Neuropsychology, 29(6), 874–881. https://doi.org/10.1037/neu0000200

Luauté, J., Halligan, P., Rode, G., Rossetti, Y., & Boisson, D. (2006). Visuo-spatial neglect: A systematic review of current interventions and their effectiveness. Neuroscience and biobehavioral reviews, 30(7), 961–982. https://doi.org/10.1016/j.neubiorev.2006.03.001

Marshall, J. C., & Halligan, P. W. (1988). Blindsight and insight in visuo-spatial neglect. Nature, 336(6201), 766–767. https://doi.org/10.1038/336766a0

Marshall, J. C., & Halligan, P. W. (1993). Visuo-spatial neglect: A new copying test to assess perceptual parsing. Journal of neurology, 240(1), 37–40. https://doi.org/10.1007/BF00838444

Mort, D. J., Malhotra, P., Mannan, S. K., Rorden, C., Pambakian, A., Kennard, C., & Husain, M. (2003). The anatomy of visual neglect. Brain: A journal of neurology, 126(Pt 9), 1986–1997. https://doi.org/10.1093/brain/awg200

Mowlem, F., Agnew-Blais, J., Taylor, E., & Asherson, P. (2019). Do different factors influence whether girls versus boys meet ADHD diagnostic criteria? Sex differences among children with high ADHD symptoms. Psychiatry research, 272, 765–773. https://doi.org/10.1016/j.psychres.2018.12.128

Müri, R. M., Cazzoli, D., Nef, T., Mosimann, U. P., Hopfner, S., & Nyffeler, T. (2013). Non-invasive brain stimulation in neglect rehabilitation: An update. Frontiers in human neuroscience, 7, 248. https://doi.org/10.3389/fnhum.2013.00248

Ortigue, S., Mégevand, P., Perren, F., Landis, T., & Blanke, O. (2006). Double dissociation between representational personal and extrapersonal neglect. Neurology, 66(9), 1414–1417. https://doi.org/10.1212/01.wnl.0000210440.49932.e7

Parton, A., Malhotra, P., & Husain, M. (2004). Hemispatial neglect. Journal of neurology, neurosurgery, and psychiatry, 75(1), 13–21.

Rafal, R. D. (1994). Neglect. Current opinion in neurobiology, 4(2), 231–236. https://doi.org/10.1016/0959-4388(94)90078-7

Rees, G., Wojciulik, E., Clarke, K., Husain, M., Frith, C., & Driver, J. (2000). Unconscious activation of visual cortex in the damaged right hemisphere of a parietal patient with extinction. Brain: A journal of neurology, 123(Pt 8), 1624–1633. https://doi.org/10.1093/brain/123.8.1624

Riddoch, M. J., Chechlacz, M., Mevorach, C., Mavritsaki, E., Allen, H., & Humphreys, G. W. (2010). The neural mechanisms of visual selection: The view from neuropsychology. Annals of the New York Academy of Sciences, 1191, 156–181. https://doi.org/10.1111/j.1749-6632.2010.05448.x

Robertson, L. C. (2004). Space, objects, minds, and brains. New York: Psychology Press.

Rode, G., Charles, N., Perenin, M. T., Vighetto, A., Trillet, M., & Aimard, G. (1992). Partial remission of hemiplegia and somatoparaphrenia through vestibular stimulation in a case of unilateral neglect. Cortex; a journal devoted to the study of the nervous system and behavior, 28(2), 203–208. https://doi.org/10.1016/s0010-9452(13)80048-2

Rossetti, Y., Rode, G., Pisella, L., Farné, A., Li, L., Boisson, D., & Perenin, M. T. (1998). Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature, 395(6698), 166–169. https://doi.org/10.1038/25988

Rubens, A. B. (1985). Caloric stimulation and unilateral visual neglect. Neurology, 35(7), 1019–1024. https://doi.org/10.1212/wnl.35.7.1019

Rubia, K. (2018). Cognitive neuroscience of attention deficit hyperactivity disorder (ADHD) and its clinical translation. Frontiers in human neuroscience, 12, 100. https://doi.org/10.3389/fnhum.2018.00100

Shaw, P., Lerch, J., Greenstein, D., Sharp, W., Clasen, L., Evans, A., Giedd, J., Castellanos, F. X., & Rapoport, J. (2006). Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Archives of general psychiatry, 63(5), 540–549. https://doi.org/10.1001/archpsyc.63.5.540

Siviy, S. M., & Panksepp, J. (2011). In search of the neurobiological substrates for social playfulness in mammalian brains. Neuroscience and biobehavioral reviews, 35(9), 1821–1830. https://doi.org/10.1016/j.neubiorev.2011.03.006

Umeonwuka, C., Roos, R., & Ntsiea, V. (2022). Current trends in the treatment of patients with post-stroke unilateral spatial neglect: A scoping review. Disability and rehabilitation, 44(11), 2158–2185. https://doi.org/10.1080/09638288.2020.1824026

Valera, E. M., Faraone, S. V., Murray, K. E., & Seidman, L. J. (2007). Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biological psychiatry, 61(12), 1361–1369. https://doi.org/10.1016/j.biopsych.2006.06.011

van der Marel, K., Klomp, A., Meerhoff, G. F., Schipper, P., Lucassen, P. J., Homberg, J. R., Dijkhuizen, R. M., & Reneman, L. (2014). Long-term oral methylphenidate treatment in adolescent and adult rats: Differential effects on brain morphology and function. Neuropsychopharmacology: Official publication of the American College of Neuropsychopharmacology, 39(2), 263–273. https://doi.org/10.1038/npp.2013.169

Vuilleumier, P., Valenza, N., Mayer, E., Reverdin, A., & Landis, T. (1998). Near and far visual space in unilateral neglect. Annals of neurology, 43(3), 406–410. https://doi.org/10.1002/ana.410430324

Vysniauske, R., Verburgh, L., Oosterlaan, J., & Molendijk, M. L. (2020). The effects of physical exercise on functional outcomes in the treatment of ADHD: A meta-analysis. Journal of attention disorders, 24(5), 644–654. https://doi.org/10.1177/1087054715627489

19.6 How Do We Use Executive Functions to Make Decisions and Achieve Goals?

Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology review, 16(1), 17–42. https://doi.org/10.1007/s11065-006-9002-x

Ambrosini, E., Arbula, S., Rossato, C., Pacella, V., & Vallesi, A. (2019). Neuro-cognitive architecture of executive functions: A latent variable analysis. Cortex; a journal devoted to the study of the nervous system and behavior, 119, 441–456. https://doi.org/10.1016/j.cortex.2019.07.013

Andreasen, N. C., Rezai, K., Alliger, R., Swayze, V. W., 2nd, Flaum, M., Kirchner, P., Cohen, G., & O'Leary, D. S. (1992). Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Archives of general psychiatry, 49(12), 943–958. https://doi.org/10.1001/archpsyc.1992.01820120031006

Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature neuroscience, 6(2), 115–116. https://doi.org/10.1038/nn1003

Badre, D., & D'Esposito, M. (2009). Is the rostro-caudal axis of the frontal lobe hierarchical?. Nature reviews. Neuroscience, 10(9), 659–669. https://doi.org/10.1038/nrn2667

Banich, M. T. (2019). The Stroop effect occurs at multiple points along a cascade of control: Evidence from cognitive neuroscience approaches. Frontiers in psychology, 10, 2164. https://doi.org/10.3389/fpsyg.2019.02164

Bilder, R. M., Goldman, R. S., Volavka, J., Czobor, P., Hoptman, M., Sheitman, B., Lindenmayer, J. P., Citrome, L., McEvoy, J., Kunz, M., Chakos, M., Cooper, T. B., Horowitz, T. L., & Lieberman, J. A. (2002). Neurocognitive effects of clozapine, olanzapine, risperidone, and haloperidol in patients with chronic schizophrenia or schizoaffective disorder. The American journal of psychiatry, 159(6), 1018–1028. https://doi.org/10.1176/appi.ajp.159.6.1018

Birrell, J. M., & Brown, V. J. (2000). Medial frontal cortex mediates perceptual attentional set shifting in the rat. The Journal of neuroscience: The official journal of the Society for Neuroscience, 20(11), 4320–4324. https://doi.org/10.1523/JNEUROSCI.20-11-04320.2000

Bortz, D. M., Feistritzer, C. M., & Grace, A. A. (2023). Medial prefrontal cortex to medial septum pathway activation improves cognitive flexibility in rats. The international journal of neuropsychopharmacology, 26(6), 426–437. https://doi.org/10.1093/ijnp/pyad019

Bowie, C. R., & Harvey, P. D. (2006). Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatric disease and treatment, 2(4), 531–536. https://doi.org/10.2147/nedt.2006.2.4.531

Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., & Damasio, A. R. (1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science (New York, N.Y.), 264(5162), 1102–1105. https://doi.org/10.1126/science.8178168

Dehaene, S., Posner, M. I., & Tucker, D. M. (1994). Localization of a neural system for error detection and compensation. Psychological science, 5, 303–305.

D'Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Brain research. Cognitive brain research, 7(1), 1–13. https://doi.org/10.1016/s0926-6410(98)00004-4

Dias, R., Robbins, T. W., & Roberts, A. C. (1996). Primate analogue of the Wisconsin Card Sorting Test: Effects of excitotoxic lesions of the prefrontal cortex in the marmoset. Behavioral neuroscience, 110(5), 872–886. https://doi.org/10.1037//0735-7044.110.5.872

Dias, R., Robbins, T. W., & Roberts, A. C. (1997). Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: Restriction to novel situations and independence from "on-line" processing. The Journal of neuroscience: The official journal of the Society for Neuroscience, 17(23), 9285–9297. https://doi.org/10.1523/JNEUROSCI.17-23-09285.1997

Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & psychophysics, 16, 143–149.

Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography and clinical neurophysiology, 78(6), 447–455. https://doi.org/10.1016/0013-4694(91)90062-9

Fisher, B. M., Saksida, L. M., Robbins, T. W., & Bussey, T. J. (2020). Functional dissociations between subregions of the medial prefrontal cortex on the rodent touchscreen continuous performance test (rCPT) of attention. Behavioral neuroscience, 134(1), 1–14. https://doi.org/10.1037/bne0000338

Friedman, N. P., & Robbins, T. W. (2022). The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology: Official publication of the American College of Neuropsychopharmacology, 47(1), 72–89. https://doi.org/10.1038/s41386-021-01132-0

Gaebel, W., Stricker, J., & Riesbeck, M. (2020). The long-term antipsychotic treatment of schizophrenia: A selective review of clinical guidelines and clinical case examples. Schizophrenia research, 225, 4–14. https://doi.org/10.1016/j.schres.2019.10.049

Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (2018). The error-related negativity. Perspectives on psychological science: A journal of the Association for Psychological Science, 13(2), 200–204. https://doi.org/10.1177/1745691617715310

Goldstein, B., Obrzut, J. E., John, C., Ledakis, G., & Armstrong, C. L. (2004). The impact of frontal and non-frontal brain tumor lesions on Wisconsin Card Sorting Test performance. Brain and cognition, 54(2), 110–116. https://doi.org/10.1016/S0278-2626(03)00269-0

Hoshi, Y., Shinba, T., Sato, C., & Doi, N. (2006). Resting hypofrontality in schizophrenia: A study using near-infrared time-resolved spectroscopy. Schizophrenia research, 84(2–3), 411–420. https://doi.org/10.1016/j.schres.2006.03.010

Hung, Y., Gaillard, S. L., Yarmak, P., & Arsalidou, M. (2018). Dissociations of cognitive inhibition, response inhibition, and emotional interference: Voxelwise ALE meta-analyses of fMRI studies. Human brain mapping, 39(10), 4065–4082. https://doi.org/10.1002/hbm.24232

Hutchison, K. A., Balota, D. A., & Duchek, J. M. (2010). The utility of Stroop task switching as a marker for early-stage Alzheimer's disease. Psychology and aging, 25(3), 545–559. https://doi.org/10.1037/a0018498

Kahn, R. S., Sommer, I. E., Murray, R. M., Meyer-Lindenberg, A., Weinberger, D. R., Cannon, T. D., O'Donovan, M., Correll, C. U., Kane, J. M., van Os, J., & Insel, T. R. (2015). Schizophrenia. Nature reviews. Disease primers, 1, 15067. https://doi.org/10.1038/nrdp.2015.67

Kaller, C. P., Heinze, K., Frenkel, A., Läppchen, C. H., Unterrainer, J. M., Weiller, C., Lange, R., & Rahm, B. (2013). Differential impact of continuous theta-burst stimulation over left and right DLPFC on planning. Human brain mapping, 34(1), 36–51. https://doi.org/10.1002/hbm.21423

Kumada, T., & Humphreys, G. W. (2006). Dimensional weighting and task switching following frontal lobe damage: Fractionating the task switching deficit. Cognitive neuropsychology, 23(3), 424–457. https://doi.org/10.1080/02643290542000058

Lappin, J. S., & Eriksen, C. W. (1966). Use of a delayed signal to stop a visual reaction-time response. Journal of experimental psychology, 72, 805–811.

Lazeron, R. H., Rombouts, S. A., Machielsen, W. C., Scheltens, P., Witter, M. P., Uylings, H. B., & Barkhof, F. (2000). Visualizing brain activation during planning: The tower of London test adapted for functional MR imaging. AJNR. American journal of neuroradiology, 21(8), 1407–1414.

Lhermitte, F. (1986). Human autonomy and the frontal lobes. Part II: Patient behavior in complex and social situations: The "environmental dependency syndrome". Annals of neurology, 19(4), 335–343. https://doi.org/10.1002/ana.410190405

Lie, C. H., Specht, K., Marshall, J. C., & Fink, G. R. (2006). Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. NeuroImage, 30(3), 1038–1049. https://doi.org/10.1016/j.neuroimage.2005.10.031

McGaughy, J., Ross, R. S., & Eichenbaum, H. (2008). Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience, 153(1), 63–71. https://doi.org/10.1016/j.neuroscience.2008.01.064

Mehta, M. A., Sahakian, B. J., McKenna, P. J., & Robbins, T. W. (1999). Systemic sulpiride in young adult volunteers simulates the profile of cognitive deficits in Parkinson's disease. Psychopharmacology, 146(2), 162–174. https://doi.org/10.1007/s002130051102

Menon, V., & D'Esposito, M. (2022). The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology: Official publication of the American College of Neuropsychopharmacology, 47(1), 90–103. https://doi.org/10.1038/s41386-021-01152-w

Milner, B. (1963). Effects of different brain lesions on card sorting: The role of the frontal lobes. Archives of neurology, 9, 90–100.

Monchi, O., Petrides, M., Petre, V., Worsley, K., & Dagher, A. (2001). Wisconsin Card Sorting revisited: Distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. The Journal of neuroscience: The official journal of the Society for Neuroscience, 21(19), 7733–7741. https://doi.org/10.1523/JNEUROSCI.21-19-07733.2001

Monsell, S. (2003). Task switching. Trends in cognitive sciences, 7(3), 134–140. https://doi.org/10.1016/s1364-6613(03)00028-7

Nyhus, E., & Barceló, F. (2009). The Wisconsin Card Sorting Test and the cognitive assessment of prefrontal executive functions: A critical update. Brain and cognition, 71(3), 437–451. https://doi.org/10.1016/j.bandc.2009.03.005

Olguin, S. L., Cavanagh, J. F., Young, J. W., & Brigman, J. L. (2023). Impaired cognitive control after moderate prenatal alcohol exposure corresponds to altered EEG power during a rodent touchscreen continuous performance task. Neuropharmacology, 236, 109599. https://doi.org/10.1016/j.neuropharm.2023.109599

Ott, T., & Nieder, A. (2019). Dopamine and cognitive control in prefrontal cortex. Trends in cognitive sciences, 23(3), 213–234. https://doi.org/10.1016/j.tics.2018.12.006

Perret, E. (1974). The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. Neuropsychologia, 12(3), 323–330. https://doi.org/10.1016/0028-3932(74)90047-5

Polgár, P., Réthelyi, J. M., Bálint, S., Komlósi, S., Czobor, P., & Bitter, I. (2010). Executive function in deficit schizophrenia: What do the dimensions of the Wisconsin Card Sorting Test tell us?. Schizophrenia research, 122(1-3), 85–93. https://doi.org/10.1016/j.schres.2010.06.007

Ragozzino, M. E. (2007). The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Annals of the New York Academy of Sciences, 1121, 355–375. https://doi.org/10.1196/annals.1401.013

Ravizza, S. M., & Carter, C. S. (2008). Shifting set about task switching: Behavioral and neural evidence for distinct forms of cognitive flexibility. Neuropsychologia, 46(12), 2924–2935. https://doi.org/10.1016/j.neuropsychologia.2008.06.006

Riehemann, S., Volz, H. P., Stützer, P., Smesny, S., Gaser, C., & Sauer, H. (2001). Hypofrontality in neuroleptic-naive schizophrenic patients during the Wisconsin Card Sorting Test--a fMRI study. European archives of psychiatry and clinical neuroscience, 251(2), 66–71. https://doi.org/10.1007/s004060170055

Robbins, T. W., & Arnsten, A. F. (2009). The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation. Annual review of neuroscience, 32, 267–287. https://doi.org/10.1146/annurev.neuro.051508.135535

Rogers, R. D., Sahakian, B. J., Hodges, J. R., Polkey, C. E., Kennard, C., & Robbins, T. W. (1998). Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson's disease. Brain: A journal of neurology, 121(Pt 5), 815–842. https://doi.org/10.1093/brain/121.5.815

Spark, D. L., Fornito, A., Langmead, C. J., & Stewart, G. D. (2022). Beyond antipsychotics: A twenty-first century update for preclinical development of schizophrenia therapeutics. Translational psychiatry, 12(1), 147. https://doi.org/10.1038/s41398-022-01904-2

Wang, T., Guo, M., Wang, N., Zhai, H., Wang, Z., & Xu, G. (2023). Effects of theta burst stimulation on the coherence of local field potential during working memory task in rats. Brain research, 1813, 148408. https://doi.org/10.1016/j.brainres.2023.148408

Yang, A. C., & Tsai, S. J. (2017). New targets for schizophrenia treatment beyond the dopamine hypothesis. International journal of molecular sciences, 18(8), 1689. https://doi.org/10.3390/ijms18081689

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
Citation information

© Nov 20, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.