Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax

Índice
  1. Prefacio
  2. 1 Muestreo y datos
    1. Introducción
    2. 1.1 Definiciones de estadística, probabilidad y términos clave
    3. 1.2 Datos, muestreo y variación de datos y muestreo
    4. 1.3 Frecuencia, tablas de frecuencia y niveles de medición
    5. 1.4 Diseño experimental y ética
    6. 1.5 Experimento de recopilación de datos
    7. 1.6 Experimento de muestreo
    8. Términos clave
    9. Repaso del capítulo
    10. Práctica
    11. Tarea para la casa
    12. Resúmalo todo: tarea para la casa
    13. Referencias
    14. Soluciones
  3. 2 Estadística descriptiva
    1. Introducción
    2. 2.1 Gráficos de tallo y hoja (gráfico de tallo), gráficos de líneas y gráficos de barras
    3. 2.2 Histogramas, polígonos de frecuencia y gráficos de series temporales
    4. 2.3 Medidas de la ubicación de los datos
    5. 2.4 Diagramas de caja
    6. 2.5 Medidas del centro de los datos
    7. 2.6 Distorsión y media, mediana y moda
    8. 2.7 Medidas de la dispersión de los datos
    9. 2.8 Estadística descriptiva
    10. Términos clave
    11. Repaso del capítulo
    12. Repaso de fórmulas
    13. Práctica
    14. Tarea para la casa
    15. Resúmalo todo: tarea para la casa
    16. Referencias
    17. Soluciones
  4. 3 Temas de probabilidad
    1. Introducción
    2. 3.1 Terminología
    3. 3.2 Eventos mutuamente excluyentes e independientes
    4. 3.3 Dos reglas básicas de la probabilidad
    5. 3.4 Tablas de contingencia
    6. 3.5 Diagramas de árbol y de Venn
    7. 3.6 Temas de probabilidad
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Uniéndolo todo: Práctica
    13. Tarea para la casa
    14. Resúmalo todo: tarea para la casa
    15. Referencias
    16. Soluciones
  5. 4 Variables aleatorias discretas
    1. Introducción
    2. 4.1 Función de Distribución de Probabilidad (PDF) para una variable aleatoria discreta
    3. 4.2 Media o valor esperado y desviación típica
    4. 4.3 Distribución binomial
    5. 4.4 Distribución geométrica
    6. 4.5 Distribución hipergeométrica
    7. 4.6 Distribución de Poisson
    8. 4.7 Distribución discreta (experimento con cartas)
    9. 4.8 Distribución discreta (experimento de los dados de la suerte)
    10. Términos clave
    11. Repaso del capítulo
    12. Repaso de fórmulas
    13. Práctica
    14. Tarea para la casa
    15. Referencias
    16. Soluciones
  6. 5 Variables aleatorias continuas
    1. Introducción
    2. 5.1 Funciones de probabilidad continuas
    3. 5.2 La distribución uniforme
    4. 5.3 La distribución exponencial
    5. 5.4 Distribución continua
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  7. 6 La distribución normal
    1. Introducción
    2. 6.1 La distribución normal estándar
    3. 6.2 Uso de la distribución normal
    4. 6.3 Distribución normal (tiempos de vuelta)
    5. 6.4 Distribución normal (longitud del meñique)
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  8. 7 El teorema del límite central
    1. Introducción
    2. 7.1 Teorema del límite central de medias muestrales (promedios)
    3. 7.2 El teorema del límite central para las sumas
    4. 7.3 Uso del teorema del límite central
    5. 7.4 Teorema del límite central (monedas en el bolsillo)
    6. 7.5 Teorema del límite central (recetas de galletas)
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Tarea para la casa
    12. Referencias
    13. Soluciones
  9. 8 Intervalos de confianza
    1. Introducción
    2. 8.1 La media de una población utilizando la distribución normal
    3. 8.2 La media de una población utilizando la distribución t de Student
    4. 8.3 Una proporción de la población
    5. 8.4 Intervalo de confianza (costos de hogares)
    6. 8.5 Intervalo de confianza (lugar de nacimiento)
    7. 8.6 Intervalo de confianza (altura de las mujeres)
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Referencias
    14. Soluciones
  10. 9 Pruebas de hipótesis con una muestra
    1. Introducción
    2. 9.1 Hipótesis nula y alternativa
    3. 9.2 Resultados y errores de tipo I y II
    4. 9.3 Distribución necesaria para la comprobación de la hipótesis
    5. 9.4 Eventos poco comunes, la muestra, decisión y conclusión
    6. 9.5 Información adicional y ejemplos de pruebas de hipótesis completas
    7. 9.6 Pruebas de hipótesis de una sola media y una sola proporción
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Referencias
    14. Soluciones
  11. 10 Pruebas de hipótesis con dos muestras
    1. Introducción
    2. 10.1 Medias de dos poblaciones con desviaciones típicas desconocidas
    3. 10.2 Dos medias poblacionales con desviaciones típicas conocidas
    4. 10.3 Comparación de dos proporciones de población independientes
    5. 10.4 Muestras coincidentes o emparejadas
    6. 10.5 Prueba de hipótesis para dos medias y dos proporciones
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Tarea para la casa
    12. Resúmalo todo: tarea para la casa
    13. Referencias
    14. Soluciones
  12. 11 La distribución chi-cuadrado
    1. Introducción
    2. 11.1 Datos sobre la distribución chi-cuadrado
    3. 11.2 Prueba de bondad de ajuste
    4. 11.3 Prueba de independencia
    5. 11.4 Prueba de homogeneidad
    6. 11.5 Comparación de las pruebas chi-cuadrado
    7. 11.6 Prueba de una sola varianza
    8. 11.7 Laboratorio 1: Bondad de ajuste de chi-cuadrado
    9. 11.8 Laboratorio 2: prueba de independencia de chi-cuadrado
    10. Términos clave
    11. Repaso del capítulo
    12. Repaso de fórmulas
    13. Práctica
    14. Tarea para la casa
    15. Resúmalo todo: tarea para la casa
    16. Referencias
    17. Soluciones
  13. 12 Regresión lineal y correlación
    1. Introducción
    2. 12.1 Ecuaciones lineales
    3. 12.2 Diagramas de dispersión
    4. 12.3 La ecuación de regresión
    5. 12.4 Comprobación de la importancia del coeficiente de correlación
    6. 12.5 Predicción
    7. 12.6 Valores atípicos
    8. 12.7 Regresión (distancia desde la escuela)
    9. 12.8 Regresión (costo de los libros de texto)
    10. 12.9 Regresión (eficiencia del combustible)
    11. Términos clave
    12. Repaso del capítulo
    13. Repaso de fórmulas
    14. Práctica
    15. Tarea para la casa
    16. Resúmalo todo: tarea para la casa
    17. Referencias
    18. Soluciones
  14. 13 Distribución F y análisis de varianza anova de una vía
    1. Introducción
    2. 13.1 ANOVA de una vía
    3. 13.2 La distribución F y el cociente F
    4. 13.3 Datos sobre la distribución F
    5. 13.4 Prueba de dos varianzas
    6. 13.5 Laboratorio: ANOVA de una vía
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Tarea para la casa
    12. Referencias
    13. Soluciones
  15. A Ejercicios de repaso (caps. 3-13)
  16. B Pruebas prácticas (de la 1 a la 4) y exámenes finales
  17. C Conjuntos de datos
  18. D Proyectos de grupos y asociaciones
  19. E Hojas de soluciones
  20. F Oraciones, símbolos y fórmulas matemáticas
  21. G Notas para las calculadoras TI-83, 83+, 84 y 84+
  22. H Tablas
  23. Índice
La imagen muestra plantas de rábano de distintas alturas que brotan de la tierra.
Figura 5.1 Las alturas de estas plantas de rábano son variables aleatorias continuas. (créditos: Rev Stan).

Objetivos del capítulo

Al final de este capítulo el estudiante podrá:

  • Reconocer y comprender las funciones de densidad de probabilidad continuas en general.
  • Reconocer la distribución de probabilidad uniforme y aplicarla adecuadamente.
  • Reconocer la distribución de probabilidad exponencial y aplicarla adecuadamente.

Las variables aleatorias continuas tienen muchas aplicaciones. Los promedios de bateo en béisbol, las puntuaciones de CI (coeficiente intelectual), el tiempo que dura una llamada telefónica de larga distancia, la cantidad de dinero que lleva una persona, el tiempo que dura un chip de computadora y las puntuaciones de la prueba de aptitud académica (Scholastic Aptitude Test, SAT) son solo algunos de ellos. El campo de la fiabilidad depende de una serie de variables aleatorias continuas.

Nota

Los valores de las variables aleatorias discretas y continuas pueden ser ambiguos. Por ejemplo, si X es igual al número de millas (a la milla más cercana) que conduce al trabajo, entonces X es una variable aleatoria discreta. Puede contar las millas. Si X es la distancia que se recorre en automóvil hasta el trabajo, entonces se miden valores de X y X es una variable aleatoria continua. Para un segundo ejemplo, si X es igual al número de libros que hay en una mochila, entonces X es una variable aleatoria discreta. Si X es el peso de un libro, entonces X es una variable aleatoria continua porque el peso se mide. La forma de definir la variable aleatoria es muy importante.

Propiedades de las distribuciones de probabilidad continuas

El gráfico de una distribución de probabilidad continua es una curva. La probabilidad se representa mediante el área que está debajo de la curva.

La curva se denomina función de densidad de probabilidad (abreviada como pdf). Utilizamos el símbolo f(x) para representar la curva. f(x) es la función que corresponde al gráfico; utilizamos la función de densidad f(x) para dibujar el gráfico de la distribución de probabilidad.

El área debajo de la curva viene dada por una función diferente llamada función de distribución acumulativa (cdf). La función de distribución acumulativa se utiliza para evaluar la probabilidad como área.

  • Los resultados se miden, no se cuentan.
  • Toda el área debajo de la curva y sobre el eje x es igual a uno.
  • La probabilidad se calcula para intervalos de valores de x en vez de para valores individuales de x.
  • P(c < x < d) es la probabilidad de que la variable aleatoria X se calcule en el intervalo entre los valores c y d. P(c < x < d) es el área debajo de la curva, por encima del eje x, a la derecha de c y a la izquierda de d.
  • P(x = c) = 0 significa que es la probabilidad de que x tome cualquier valor individual es cero. El área por debajo de la curva, por encima del eje x y entre x = c y x = c no tiene ancho, y por tanto no tiene área (área = 0). Como la probabilidad es igual al área, la probabilidad también es cero.
  • P(c < x < d) es lo mismo que P(c ≤ x ≤ d) porque la probabilidad es igual al área.

Hallaremos el área que representa la probabilidad mediante geometría, fórmulas, tecnología o tablas de probabilidad. En general, es necesario el cálculo para hallar el área bajo la curva de muchas funciones de densidad de probabilidad. Cuando usamos fórmulas para hallar el área en este libro de texto, las fórmulas fueron halladas mediante técnicas del cálculo integral. Sin embargo, debido a que la mayoría de los estudiantes que toman este curso no han estudiado cálculo, no utilizaremos el cálculo en este libro de texto.

Hay muchas distribuciones de probabilidad continuas. Cuando se utiliza una distribución de probabilidad continua para modelar la probabilidad, la distribución utilizada se selecciona para modelar y ajustarse a la situación particular de la mejor manera.

En este capítulo y en el siguiente estudiaremos la distribución uniforme, la exponencial y la normal. Los siguientes gráficos ilustran estas distribuciones.

Este gráfico muestra una distribución uniforme. El eje horizontal va de 0 a 10. La distribución se modela mediante un rectángulo que se extiende desde x = 2 hasta x = 8,8. En el interior del rectángulo está sombreada una región desde x = 3 hasta x = 6. El área sombreada representa P(3 x < 6).
Figura 5.2 El gráfico muestra una distribución uniforme con el área entre x = 3 y x = 6 sombreada para representar la probabilidad de que el valor de la variable aleatoria X esté en el intervalo entre tres y seis.
Este gráfico muestra una distribución exponencial. El gráfico tiene una pendiente hacia abajo. Comienza en un punto del eje y y se acerca al eje x en el borde derecho del gráfico. La región debajo del gráfico de x = 2 a x = 4 está sombreada para representar P(2 < x < 4).
Figura 5.3 El gráfico muestra una Distribución Exponencial con el área entre x = 2 y x = 4 sombreada para representar la probabilidad de que el valor de la variable aleatoria X esté en el intervalo entre dos y cuatro.
Se trata de una curva de distribución normal sobre un eje horizontal identificado de –3 a 3 en intervalos de 1. El pico de la curva coincide con el punto 0 del eje horizontal. Las líneas verticales se extienden desde 1 y 2 hasta la curva. La zona entre las líneas está sombreada. Las notas del texto dicen: “El área sombreada representa la probabilidad P(1 < x < 2)”.
Figura 5.4 El gráfico muestra la distribución normal estándar con el área entre x = 1 y x = 2 sombreada para representar la probabilidad de que el valor de la variable aleatoria X esté en el intervalo entre uno y dos.
Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

Este libro no puede ser utilizado en la formación de grandes modelos de lenguaje ni incorporado de otra manera en grandes modelos de lenguaje u ofertas de IA generativa sin el permiso de OpenStax.

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.