Hay tres características principales de un experimento geométrico.
- Hay uno o más ensayos de Bernoulli con todos los fallos excepto el último, que es un acierto. En otras palabras, sigue repitiendo lo que está haciendo hasta el primer acierto. Entonces se detiene. Por ejemplo, se lanza un dardo a una diana hasta dar en ella. La primera vez que logra dar en la diana es un “acierto”, así que deja de lanzar el dardo. Puede que le lleve seis intentos hasta que acierte en la diana. Puede pensar en las pruebas como fallo, fallo, fallo, fallo, acierto, PARAR.
- En teoría, el número de pruebas podría ser eterno. Debe haber, al menos, un ensayo.
- La probabilidad, p, de un acierto y la probabilidad, q, de un fallo es igual para cada ensayo. p + q = 1 y q = 1 – p. Por ejemplo, la probabilidad de sacar un tres al lanzar un dado imparcial es . Esto es cierto sin importar cuántas veces se lance el dado. Supongamos que quiere saber la probabilidad de obtener el primer tres en la quinta lanzada. En las lanzadas del uno al cuatro, no se obtiene un lado con un tres. La probabilidad de cada una de las lanzadas es q = , la probabilidad de un fallo. La probabilidad de obtener un tres en la quinta lanzada es = 0,0804
X = el número de ensayos independientes hasta el primer acierto.
Ejemplo 4.17
Participa en un juego de azar que puede ganar o perder (no hay otras posibilidades) hasta que pierde. Su probabilidad de perder es p = 0,57. ¿Cuál es la probabilidad de que se necesiten cinco jugadas para perder? Supongamos que X = el número de partidas que juega hasta que pierde (incluye la partida perdida). Entonces X toma los valores 1, 2, 3, ... (podría seguir indefinidamente). La pregunta de probabilidad es P(x = 5).
Inténtelo 4.17
Se lanzan dardos a un tablero hasta dar con la zona central. Su probabilidad de acertar el área central es p = 0,17. Quiere hallar la probabilidad de que se necesiten ocho lanzamientos hasta que acierte al centro. ¿Qué valores toma X?
Ejemplo 4.18
Una ingeniera de seguridad considera que el 35 % de los accidentes laborales en su planta se deben a que los empleados no siguen las instrucciones. Decide mirar los informes de accidentes (seleccionados al azar y sustituidos en la pila después de la lectura) hasta que encuentra uno que muestra un accidente causado por el incumplimiento de las instrucciones por parte de los empleados. En promedio, ¿cuántos informes tendría que mirar la ingeniera de seguridad hasta hallar un informe que muestre un accidente causado por el incumplimiento de las instrucciones por parte de los empleados? ¿Cuál es la probabilidad de que la ingeniera de seguridad tenga que examinar al menos tres informes hasta hallar un informe que muestre un accidente causado por el incumplimiento de las instrucciones por parte de los empleados?
Supongamos que X = el número de accidentes que la ingeniera de seguridad debe examinar hasta hallar un informe que muestre un accidente causado por el incumplimiento de las instrucciones por parte de los empleados. X toma los valores 1, 2, 3, .... La primera pregunta le pide que calcule el valor esperado o la media. La segunda pregunta le pide que calcule P(x ≥ 3). (“Al menos” se traduce en un símbolo “mayor o igual que”).
Inténtelo 4.18
Una instructora considera que el 15 % de los estudiantes obtienen menos de una C en su examen final. Decide revisar los exámenes finales (seleccionados al azar y sustituidos en el montón después de la lectura) hasta que halle uno que muestre una calificación inferior a C. Queremos saber la probabilidad de que la instructora tenga que examinar, al menos, diez exámenes hasta que halle uno con una calificación inferior a C. ¿Cuál es la pregunta de probabilidad enunciada matemáticamente?
Ejemplo 4.19
Supongamos que busca a un estudiante de su instituto universitario que vive a menos de ocho millas de usted. Sabe que el 55 % de los 25.000 estudiantes viven a menos de ocho millas de usted. Contacta al azar con estudiantes del instituto universitario hasta que uno diga que vive a menos de ocho millas de usted. ¿Cuál es la probabilidad de que tenga que contactar cuatro personas?
Este es un problema geométrico porque puede tener varios fallos antes de tener el único acierto que desea. Además, la probabilidad de acierto sigue siendo la misma cada vez que le pregunta a un estudiante si vive a menos de cinco millas de usted. No hay un número definido de ensayos (número de veces que le pregunta a un estudiante).
Translation missing: es.problem
a. Supongamos que X = el número de ____________ a los que debe preguntar ____________ uno dice que sí.
b. ¿Qué valores toma X?
c. ¿Qué son p y q?
d. La pregunta de probabilidad es P(_______).
Solución
a. Supongamos que X = el número de estudiantes a los que debe preguntar hasta que uno diga que sí.
b. 1, 2, 3, ..., (número total de estudiantes)
c. p = 0,55; q = 0,45
d. P(x = 4)
Inténtelo 4.19
Tiene que hallar una tienda que tenga una tinta especial para impresoras. Sabe que de las tiendas que tienen tinta para impresoras, el 10 % tiene la tinta especial. Llame al azar a cada tienda hasta que una tenga la tinta que necesita. ¿Qué son p y q?
Notación para la Geometría: G = Función de distribución de probabilidad geométrica
X ~ G(p)
Lea como “X es una variable aleatoria con una distribución geométrica”. El parámetro es p; p = la probabilidad de acierto de cada ensayo.
Ejemplo 4.20
Supongamos que la probabilidad de un componente informático defectuoso es de 0,02. Los componentes se seleccionan al azar. Calcule la probabilidad de que el primer defecto sea causado por el séptimo componente probado. ¿Cuántos componentes espera probar hasta que se halle uno defectuoso?
Supongamos que X = el número de componentes informáticos probados hasta que se encuentra el primer defecto.
X toma los valores 1, 2, 3, ... donde p = 0,02. X ~ G(0,02)
Calcule P(x = 7). P(x = 7) = 0,0177.
Uso de las calculadoras TI-83, 83+, 84, 84+
Hallar la probabilidad de que x = 7,
- Introduzca 2nd, DISTR
- Desplácese hacia abajo y seleccione geometpdf(
- Pulse ENTER
- Introduzca 0,02, 7); pulse ENTER para ver el resultado: P(x = 7) = 0,0177
Para hallar la probabilidad de que x ≤ 7, siga las mismas instrucciones EXCEPTO que seleccione E:geometcdf(como la función de distribución.
La probabilidad de que el séptimo componente sea el primer defecto es de 0,0177.
El gráfico de X ~ G(0,02) es:
El eje y contiene la probabilidad de x, donde X = el número de componentes informáticos probados.
El número de componentes que se espera probar hasta hallar el primero defectuoso es la media, .
La fórmula de la media es μ = = = 50
La fórmula de la varianza es σ2 = = = 2.450
La desviación típica es σ = = = 49,5
Inténtelo 4.20
La probabilidad de que haya una varilla de acero defectuosa es de 0,01. Las varillas de acero se seleccionan al azar. Halle la probabilidad de que el primer defecto se produzca en la novena varilla de acero. Utilice la calculadora TI-83+ o TI-84 para hallar la respuesta.
Ejemplo 4.21
Translation missing: es.problem
El riesgo de desarrollar cáncer de páncreas a lo largo de la vida es de alrededor de uno de cada 78 (1,28 %). Supongamos que X = el número de personas a las que se pregunta hasta que una dice que tiene cáncer de páncreas. Entonces X es una variable aleatoria discreta con una distribución geométrica: X ~ G o X ~ G(0,0128).
- ¿Cuál es la probabilidad de que se pregunte a diez personas antes de que una diga que tiene cáncer de páncreas?
- ¿Cuál es la probabilidad de que tenga que preguntar a 20 personas?
- Calcule (i) la media y (ii) la desviación típica de X.
Solución
- P(x = 10) = geometpdf(0,0128, 10) = 0,0114
- P(x = 20) = geometpdf(0,0128, 20) = 0,01
-
- Media = μ = = = 78
- Desviación típica = σ = = ≈ 77,6234
Inténtelo 4.21
La tasa de alfabetización de un país mide la proporción de personas mayores de 15 años que saben leer y escribir. La tasa de alfabetización de las mujeres en Afganistán es del 12 %. Supongamos que X = el número de mujeres afganas a las que se pregunta hasta que una dice que sabe leer y escribir.
- ¿Cuál es la distribución de probabilidad de X?
- ¿Cuál es la probabilidad de que les pregunte a cinco mujeres antes de que una diga que sabe leer y escribir?
- ¿Cuál es la probabilidad de que tenga que preguntarles a diez mujeres?
- Calcule (i) la media y (ii) la desviación típica de X.