Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax

Índice
  1. Prefacio
  2. 1 Muestreo y datos
    1. Introducción
    2. 1.1 Definiciones de estadística, probabilidad y términos clave
    3. 1.2 Datos, muestreo y variación de datos y muestreo
    4. 1.3 Frecuencia, tablas de frecuencia y niveles de medición
    5. 1.4 Diseño experimental y ética
    6. 1.5 Experimento de recopilación de datos
    7. 1.6 Experimento de muestreo
    8. Términos clave
    9. Repaso del capítulo
    10. Práctica
    11. Tarea para la casa
    12. Resúmalo todo: tarea para la casa
    13. Referencias
    14. Soluciones
  3. 2 Estadística descriptiva
    1. Introducción
    2. 2.1 Gráficos de tallo y hoja (gráfico de tallo), gráficos de líneas y gráficos de barras
    3. 2.2 Histogramas, polígonos de frecuencia y gráficos de series temporales
    4. 2.3 Medidas de la ubicación de los datos
    5. 2.4 Diagramas de caja
    6. 2.5 Medidas del centro de los datos
    7. 2.6 Distorsión y media, mediana y moda
    8. 2.7 Medidas de la dispersión de los datos
    9. 2.8 Estadística descriptiva
    10. Términos clave
    11. Repaso del capítulo
    12. Repaso de fórmulas
    13. Práctica
    14. Tarea para la casa
    15. Resúmalo todo: tarea para la casa
    16. Referencias
    17. Soluciones
  4. 3 Temas de probabilidad
    1. Introducción
    2. 3.1 Terminología
    3. 3.2 Eventos mutuamente excluyentes e independientes
    4. 3.3 Dos reglas básicas de la probabilidad
    5. 3.4 Tablas de contingencia
    6. 3.5 Diagramas de árbol y de Venn
    7. 3.6 Temas de probabilidad
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Uniéndolo todo: Práctica
    13. Tarea para la casa
    14. Resúmalo todo: tarea para la casa
    15. Referencias
    16. Soluciones
  5. 4 Variables aleatorias discretas
    1. Introducción
    2. 4.1 Función de Distribución de Probabilidad (PDF) para una variable aleatoria discreta
    3. 4.2 Media o valor esperado y desviación típica
    4. 4.3 Distribución binomial
    5. 4.4 Distribución geométrica
    6. 4.5 Distribución hipergeométrica
    7. 4.6 Distribución de Poisson
    8. 4.7 Distribución discreta (experimento con cartas)
    9. 4.8 Distribución discreta (experimento de los dados de la suerte)
    10. Términos clave
    11. Repaso del capítulo
    12. Repaso de fórmulas
    13. Práctica
    14. Tarea para la casa
    15. Referencias
    16. Soluciones
  6. 5 Variables aleatorias continuas
    1. Introducción
    2. 5.1 Funciones de probabilidad continuas
    3. 5.2 La distribución uniforme
    4. 5.3 La distribución exponencial
    5. 5.4 Distribución continua
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  7. 6 La distribución normal
    1. Introducción
    2. 6.1 La distribución normal estándar
    3. 6.2 Uso de la distribución normal
    4. 6.3 Distribución normal (tiempos de vuelta)
    5. 6.4 Distribución normal (longitud del meñique)
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  8. 7 El teorema del límite central
    1. Introducción
    2. 7.1 Teorema del límite central de medias muestrales (promedios)
    3. 7.2 El teorema del límite central para las sumas
    4. 7.3 Uso del teorema del límite central
    5. 7.4 Teorema del límite central (monedas en el bolsillo)
    6. 7.5 Teorema del límite central (recetas de galletas)
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Tarea para la casa
    12. Referencias
    13. Soluciones
  9. 8 Intervalos de confianza
    1. Introducción
    2. 8.1 La media de una población utilizando la distribución normal
    3. 8.2 La media de una población utilizando la distribución t de Student
    4. 8.3 Una proporción de la población
    5. 8.4 Intervalo de confianza (costos de hogares)
    6. 8.5 Intervalo de confianza (lugar de nacimiento)
    7. 8.6 Intervalo de confianza (altura de las mujeres)
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Referencias
    14. Soluciones
  10. 9 Pruebas de hipótesis con una muestra
    1. Introducción
    2. 9.1 Hipótesis nula y alternativa
    3. 9.2 Resultados y errores de tipo I y II
    4. 9.3 Distribución necesaria para la comprobación de la hipótesis
    5. 9.4 Eventos poco comunes, la muestra, decisión y conclusión
    6. 9.5 Información adicional y ejemplos de pruebas de hipótesis completas
    7. 9.6 Pruebas de hipótesis de una sola media y una sola proporción
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Referencias
    14. Soluciones
  11. 10 Pruebas de hipótesis con dos muestras
    1. Introducción
    2. 10.1 Medias de dos poblaciones con desviaciones típicas desconocidas
    3. 10.2 Dos medias poblacionales con desviaciones típicas conocidas
    4. 10.3 Comparación de dos proporciones de población independientes
    5. 10.4 Muestras coincidentes o emparejadas
    6. 10.5 Prueba de hipótesis para dos medias y dos proporciones
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Tarea para la casa
    12. Resúmalo todo: tarea para la casa
    13. Referencias
    14. Soluciones
  12. 11 La distribución chi-cuadrado
    1. Introducción
    2. 11.1 Datos sobre la distribución chi-cuadrado
    3. 11.2 Prueba de bondad de ajuste
    4. 11.3 Prueba de independencia
    5. 11.4 Prueba de homogeneidad
    6. 11.5 Comparación de las pruebas chi-cuadrado
    7. 11.6 Prueba de una sola varianza
    8. 11.7 Laboratorio 1: Bondad de ajuste de chi-cuadrado
    9. 11.8 Laboratorio 2: prueba de independencia de chi-cuadrado
    10. Términos clave
    11. Repaso del capítulo
    12. Repaso de fórmulas
    13. Práctica
    14. Tarea para la casa
    15. Resúmalo todo: tarea para la casa
    16. Referencias
    17. Soluciones
  13. 12 Regresión lineal y correlación
    1. Introducción
    2. 12.1 Ecuaciones lineales
    3. 12.2 Diagramas de dispersión
    4. 12.3 La ecuación de regresión
    5. 12.4 Comprobación de la importancia del coeficiente de correlación
    6. 12.5 Predicción
    7. 12.6 Valores atípicos
    8. 12.7 Regresión (distancia desde la escuela)
    9. 12.8 Regresión (costo de los libros de texto)
    10. 12.9 Regresión (eficiencia del combustible)
    11. Términos clave
    12. Repaso del capítulo
    13. Repaso de fórmulas
    14. Práctica
    15. Tarea para la casa
    16. Resúmalo todo: tarea para la casa
    17. Referencias
    18. Soluciones
  14. 13 Distribución F y análisis de varianza anova de una vía
    1. Introducción
    2. 13.1 ANOVA de una vía
    3. 13.2 La distribución F y el cociente F
    4. 13.3 Datos sobre la distribución F
    5. 13.4 Prueba de dos varianzas
    6. 13.5 Laboratorio: ANOVA de una vía
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Tarea para la casa
    12. Referencias
    13. Soluciones
  15. A Ejercicios de repaso (caps. 3-13)
  16. B Pruebas prácticas (de la 1 a la 4) y exámenes finales
  17. C Conjuntos de datos
  18. D Proyectos de grupos y asociaciones
  19. E Hojas de soluciones
  20. F Oraciones, símbolos y fórmulas matemáticas
  21. G Notas para las calculadoras TI-83, 83+, 84 y 84+
  22. H Tablas
  23. Índice

2.1 Gráficos de tallo y hoja (gráfico de tallo), gráficos de líneas y gráficos de barras

Un gráfico de tallo y hoja es una forma de representar los datos y observar la distribución. En un gráfico de tallo y hoja todos los valores de los datos de una clase son visibles. La ventaja de un gráfico de tallo y hoja es que se enumeran todos los valores, a diferencia de un histograma, que da clases de valores de datos. Un gráfico de líneas se suele usar para representar un conjunto de valores de datos en los que una cantidad varía con el tiempo. Estos gráficos son útiles para hallar tendencias. Es decir, hallar un patrón general en conjuntos de datos que incluyan temperatura, ventas, empleo, ganancias o costos de la compañía durante un periodo. Un gráfico de barras es un gráfico que utiliza barras horizontales o verticales para mostrar comparaciones entre categorías. Un eje del gráfico muestra las categorías específicas que se comparan, y el otro eje representa un valor discreto. Algunos gráficos de barras presentan las barras agrupadas en grupos de más de uno (gráficos de barras agrupados), y otros muestran las barras divididas en subpartes para mostrar el efecto acumulativo (gráficos de barras apilados). Los gráficos de barras son especialmente útiles cuando se utilizan datos categóricos.

2.2 Histogramas, polígonos de frecuencia y gráficos de series temporales

Un histograma es una versión gráfica de una distribución de frecuencias. El gráfico consiste en barras de igual ancho dibujadas de forma adyacente. La escala horizontal representa clases de valores de datos cuantitativos y la escala vertical representa frecuencias. Las alturas de las barras corresponden a valores de frecuencia. Los histogramas se suelen utilizar para conjuntos de datos cuantitativos, continuos y de gran tamaño. Un polígono de frecuencias también se puede usar cuando se grafican grandes conjuntos de datos con puntos de datos que se repiten. Los datos suelen ir en el eje y, y la frecuencia se representa en el eje x. Los gráficos de series temporales pueden ser útiles cuando se observan grandes cantidades de datos de una variable durante un periodo.

2.3 Medidas de la ubicación de los datos

Los valores que dividen un conjunto de datos ordenados en 100 partes iguales se llaman percentiles. Los percentiles se utilizan para comparar e interpretar datos. Por ejemplo, una observación en el percentil 50 sería mayor que el 50 % de las demás observaciones del conjunto. Los cuartiles dividen los datos en cuartos. El primer cuartil (Q1) es el percentil 25, el segundo cuartil (Q2 o mediana) es el percentil 50 y el tercer cuartil (Q3) es el percentil 75. El rango intercuartil, o IQR, es el rango del 50 % del centro de los valores de los datos. El IQR se encuentra restando Q1 de Q3, y puede ayudar a determinar los valores atípicos utilizando las dos expresiones siguientes.

  • Q3 + IQR(1,5)
  • Q1IQR(1,5)

2.4 Diagramas de caja

Los gráficos de caja son un tipo de gráfico que puede ayudar a organizar los datos visualmente. Para elaborar un diagrama de caja se deben calcular los siguientes puntos de datos: el valor mínimo, el primer cuartil, la mediana, el tercer cuartil y el valor máximo. Una vez que el diagrama de caja se ha graficado, se pueden visualizar y comparar las distribuciones de los datos.

2.5 Medidas del centro de los datos

La media y la mediana se pueden calcular para ayudar a hallar el “centro” de un conjunto de datos. La media es la mejor estimación para el conjunto de datos reales, pero la mediana es la mejor medida cuando un conjunto de datos contiene varios valores atípicos o extremos. La moda le indicará el dato (o los datos) que aparecen con más frecuencia en su conjunto de datos. La media, la mediana y la moda son extremadamente útiles cuando se necesita analizar datos, pero si el conjunto de datos está formado por rangos que carecen de valores específicos, la media puede parecer imposible de calcular. Sin embargo, la media se puede aproximar si se suma el límite inferior con el superior y se divide entre dos para hallar el punto medio de cada intervalo. Multiplique cada punto medio por el número de valores hallados en el rango correspondiente. Divida la suma de estos valores entre el número total de valores de datos del conjunto.

2.6 Distorsión y media, mediana y moda

Observar la distribución de los datos puede revelar mucho sobre la relación entre la media, la mediana y la moda. Hay tres tipos de distribuciones. Una distribución distorsionada a la izquierda (o negativa) tiene una forma como la Figura 2.17. Una distribución distorsionada a la derecha (o positiva) tiene una forma como la Figura 2.18. Una distribución simétrica se parece a la Figura 2.16.

2.7 Medidas de la dispersión de los datos

La desviación típica puede ayudarlo a calcular la dispersión de los datos. Existen diferentes ecuaciones para calcular la desviación típica de una muestra o de una población.

  • La desviación típica nos permite comparar numéricamente datos individuales o clases con la media del conjunto de datos.
  • s = (x x ¯ ) 2 n1 (x x ¯ ) 2 n1 o s = e (x x ¯ ) 2 n1 e (x x ¯ ) 2 n1 es la fórmula para calcular la desviación típica de una muestra. Para calcular la desviación típica de una población usaríamos la media de la población, μ, y la fórmula σ = (xμ) 2 N (xμ) 2 N o σ = e (xμ) 2 N e (xμ) 2 N .
Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.