Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Introducción a la estadística empresarial

3.3 Dos reglas básicas de la probabilidad

Introducción a la estadística empresarial3.3 Dos reglas básicas de la probabilidad

Índice
  1. Prefacio
  2. 1 Muestreo y datos
    1. Introducción
    2. 1.1 Definiciones de estadística, probabilidad y términos clave
    3. 1.2 Datos, muestreo y variación de datos y muestreo
    4. 1.3 Niveles de medición
    5. 1.4 Diseño experimental y ética
    6. Términos clave
    7. Repaso del capítulo
    8. Tarea para la casa
    9. Referencias
    10. Soluciones
  3. 2 Estadística descriptiva
    1. Introducción
    2. 2.1 Datos mostrados
    3. 2.2 Medidas de la ubicación de los datos
    4. 2.3 Medidas del centro de los datos
    5. 2.4 Notación sigma y cálculo de la media aritmética
    6. 2.5 Media geométrica
    7. 2.6 Distorsión y media, mediana y moda
    8. 2.7 Medidas de la dispersión de los datos
    9. Términos clave
    10. Repaso del capítulo
    11. Repaso de fórmulas
    12. Práctica
    13. Tarea para la casa
    14. Resúmalo todo: tarea para la casa
    15. Referencias
    16. Soluciones
  4. 3 Temas de probabilidad
    1. Introducción
    2. 3.1 Terminología
    3. 3.2 Eventos mutuamente excluyentes e independientes
    4. 3.3 Dos reglas básicas de la probabilidad
    5. 3.4 Tablas de contingencia y árboles de probabilidad
    6. 3.5 Diagramas de Venn
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Uniéndolo todo: Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  5. 4 Variables aleatorias discretas
    1. Introducción
    2. 4.1 Distribución hipergeométrica
    3. 4.2 Distribución binomial
    4. 4.3 Distribución geométrica
    5. 4.4 Distribución de Poisson
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  6. 5 Variables aleatorias continuas
    1. Introducción
    2. 5.1 Propiedades de las funciones de densidad de probabilidad continuas
    3. 5.2 La distribución uniforme
    4. 5.3 La distribución exponencial
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  7. 6 La distribución normal
    1. Introducción
    2. 6.1 La distribución normal estándar
    3. 6.2 Uso de la distribución normal
    4. 6.3 Estimación de la binomial con la distribución normal
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  8. 7 El teorema del límite central
    1. Introducción
    2. 7.1 Teorema del límite central de las medias muestrales
    3. 7.2 Uso del teorema del límite central
    4. 7.3 Teorema del límite central de las proporciones
    5. 7.4 Factor de corrección de población finita
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  9. 8 Intervalos de confianza
    1. Introducción
    2. 8.1 Un intervalo de confianza para una desviación típica de la población, con un tamaño de muestra conocido o grande
    3. 8.2 Un intervalo de confianza para una desviación típica de población desconocida, caso de una muestra pequeña
    4. 8.3 Un intervalo de confianza para una proporción de población
    5. 8.4 Cálculo del tamaño de la muestra n: variables aleatorias continuas y binarias
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  10. 9 Pruebas de hipótesis con una muestra
    1. Introducción
    2. 9.1 Hipótesis nula y alternativa
    3. 9.2 Resultados y errores de tipo I y II
    4. 9.3 Distribución necesaria para la comprobación de la hipótesis
    5. 9.4 Ejemplos de pruebas de hipótesis completas
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  11. 10 Pruebas de hipótesis con dos muestras
    1. Introducción
    2. 10.1 Comparación de las medias de dos poblaciones independientes
    3. 10.2 Criterios de Cohen para efectos de tamaño pequeño, mediano y grande
    4. 10.3 Prueba de diferencias de medias: suponer varianzas de población iguales
    5. 10.4 Comparación de dos proporciones de población independientes
    6. 10.5 Dos medias poblacionales con desviaciones típicas conocidas
    7. 10.6 Muestras coincidentes o emparejadas
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  12. 11 La distribución chi-cuadrado
    1. Introducción
    2. 11.1 Datos sobre la distribución chi-cuadrado
    3. 11.2 Prueba de una sola varianza
    4. 11.3 Prueba de bondad de ajuste
    5. 11.4 Prueba de independencia
    6. 11.5 Prueba de homogeneidad
    7. 11.6 Comparación de las pruebas chi-cuadrado
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  13. 12 La distribución F y el anova de una vía
    1. Introducción
    2. 12.1 Prueba de dos varianzas
    3. 12.2 ANOVA de una vía
    4. 12.3 La distribución F y el cociente F
    5. 12.4 Datos sobre la distribución F
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  14. 13 Regresión lineal y correlación
    1. Introducción
    2. 13.1 El coeficiente de correlación r
    3. 13.2 Comprobación de la importancia del coeficiente de correlación
    4. 13.3 Ecuaciones lineales
    5. 13.4 La ecuación de regresión
    6. 13.5 Interpretación de los coeficientes de regresión: elasticidad y transformación logarítmica
    7. 13.6 Predicción con una ecuación de regresión
    8. 13.7 Cómo utilizar Microsoft Excel® para el análisis de regresión
    9. Términos clave
    10. Repaso del capítulo
    11. Práctica
    12. Soluciones
  15. A Cuadros estadísticos
  16. B Oraciones, símbolos y fórmulas matemáticas
  17. Índice

Al calcular la probabilidad, hay que tener en cuenta dos reglas para determinar si dos eventos son independientes o dependientes y si son mutuamente excluyentes o no.

La regla de multiplicación

Si A y B son dos eventos definidos en un espacio muestral, entonces P(A B) = P(B)P(A | B)P(AB)=P(B)P(A|B). Podemos pensar que el símbolo de intersección sustituye a la palabra "y".

Esta regla también puede escribirse como: P(A| B) = P(AB) P(B) P(A|B)= P(AB) P(B)

Esta ecuación se lee como la probabilidad de A dado que B es igual a la probabilidad de A y B dividido entre la probabilidad de B.

Si A y B son independientes, entonces P ( A | B ) = P ( A ) P(A|B)=P(A). Entonces P ( A B ) = P ( A | B ) P ( B ) P(AB)=P(A|B)P(B) se convierte en P ( A B ) = P ( A ) ( B ) P(AB)=P(A)(B) porque el P ( A | B ) = P ( A ) P(A|B)=P(A) si A y B son independientes.

Una forma fácil de recordar la regla de la multiplicación es que la palabra "y" significa que el evento tiene que satisfacer dos condiciones. Por ejemplo, el nombre extraído de la lista de la clase debe ser tanto una mujer como un estudiante de segundo año. Es más difícil satisfacer dos condiciones que una sola y, por supuesto, cuando multiplicamos fracciones el resultado es siempre menor. Esto refleja la creciente dificultad de satisfacer dos condiciones.

La regla de adición

Si A y B están definidos en un espacio muestral, entonces P ( A B ) = P ( A ) + P ( B ) P ( A B ) P(AB)=P(A)+P(B)P(AB). Podemos pensar que el símbolo de la unión sustituye a la palabra "o". La razón por la que restamos la intersección de A y B es para no contar dos veces los elementos que están en A y B.

Si A y B se excluyen mutuamente, entonces P ( A B ) = 0 P(AB)=0. Entonces P ( A B ) = P ( A ) + P ( B ) P ( A B ) P(AB)=P(A)+P(B)P(AB) se convierte en P ( A B ) = P ( A ) + P ( B ) P(AB)=P(A)+P(B).

Ejemplo 3.14

Klaus está tratando de elegir dónde ir de vacaciones. Sus dos opciones son: A = Nueva Zelanda y B = Alaska

  • Klaus solo puede permitirse unas vacaciones. La probabilidad de que elija A es P(A) = 0,6 y la probabilidad de que elija B es P(B) = 0,35.
  • P ( A B ) = 0 P(AB)=0 porque Klaus solo puede permitirse unas vacaciones.
  • Por lo tanto, la probabilidad de que elija Nueva Zelanda o Alaska es P ( A B ) = P ( A ) + P ( B ) = 0,6 + 0,35 = 0,95P(AB)=P(A)+P(B)=0,6+0,35=0,95. Tenga en cuenta que la probabilidad de que no elija ir a ningún sitio de vacaciones debe ser de 0,05.

Ejemplo 3.15

Carlos juega fútbol universitario. Hace un gol el 65 % de las veces que chuta. Carlos va a intentar marcar dos goles seguidos en el próximo partido. A = el evento en el que Carlos acierta en su primer intento. P(A) = 0,65. B = el evento en el que Carlos acierta en su segundo intento. P(B) = 0,65. Carlos tiende a chutar en líneas. La probabilidad de que haga el segundo gol || que haga el primer gol es 0,90.

Translation missing: es.problem

  1. ¿Cuál es la probabilidad de que anote ambos goles?
  2. ¿Cuál es la probabilidad de que Carlos anote el primer gol o el segundo?
  3. ¿A y B son independientes?
  4. ¿A y B son mutuamente excluyentes?

Inténtelo 3.15

Helen juega baloncesto. En cuanto a los tiros libres, acierta el tiro el 75 % de las veces. Helen debe intentar ahora dos tiros libres. C = el evento en el que Helen anota el primer tiro. P(C) = 0,75. D = el evento en el que Helen anota el segundo tiro. P(D) = 0,75. La probabilidad de que Helen anote el segundo tiro libre dado que anotó el primero es de 0,85. ¿Cuál es la probabilidad de que Helen anote ambos tiros libres?

Ejemplo 3.16

Un equipo de natación comunitario tiene 150 miembros. Setenta y cinco de los miembros son nadadores avanzados. Cuarenta y siete son nadadores intermedios. El resto son nadadores principiantes. Cuarenta de los nadadores avanzados practican cuatro veces por semana. Treinta de los nadadores de nivel intermedio practican cuatro veces por semana. Diez de los nadadores principiantes practican cuatro veces por semana. Supongamos que un miembro del equipo de natación es elegido al azar.

Translation missing: es.problem

  1. ¿Cuál es la probabilidad de que el miembro sea un nadador principiante?
  2. ¿Cuál es la probabilidad de que el miembro practique cuatro veces por semana?
  3. ¿Cuál es la probabilidad de que el miembro sea un nadador avanzado y practique cuatro veces por semana?
  4. ¿Cuál es la probabilidad de que un miembro sea un nadador avanzado y un nadador intermedio? ¿Ser un nadador avanzado y un nadador intermedio son mutuamente excluyentes? ¿Por qué sí o por qué no?
  5. ¿Ser un nadador principiante y practicar cuatro veces a la semana son eventos independientes? ¿Por qué sí o por qué no?

Inténtelo 3.16

Una escuela tiene 200 estudiantes de último año, de los cuales 140 irán al instituto universitario el año siguiente. Cuarenta irán directamente a trabajar. El resto se está tomando un año sabático. Cincuenta de los estudiantes de último año que van al instituto universitario practican deportes. Treinta de los estudiantes de último año que van directamente a trabajar practican deportes. Cinco de los estudiantes de último año que se toman un año sabático practican deportes. ¿Cuál es la probabilidad de que un estudiante de último año se tome un año sabático?

Ejemplo 3.17

Felicity asiste a Modesto JC en Modesto, CA. La probabilidad de que Felicity se inscriba en una clase de Matemáticas es de 0,2 y la probabilidad de que lo haga en una clase de Oratoria es de 0,65. La probabilidad de que se inscriba en una clase de Matemáticas || que se inscriba en la clase de Oratoria es de 0,25.

Supongamos que: M = clase de Matemáticas, S = clase de Oratoria, M||S = discurso matemático dado

Translation missing: es.problem

  1. ¿Cuál es la probabilidad de que Felicity se inscriba en Matemáticas y Oratoria?
    Calcule P(M S) = P(M||S)P(S).
  2. ¿Cuál es la probabilidad de que Felicity se inscriba en clases de Matemáticas o de Oratoria?
    Calcule P(M S) = P(M) + P(S) - P(M S).
  3. ¿M y S son independientes? ¿Es P(M||S) = P(M)?
  4. ¿M y S son mutuamente excluyentes? ¿Es P(M S) = 0?

Inténtelo 3.17

Un estudiante va a la biblioteca. Supongamos los eventos B = el estudiante pide un libro prestado y D = el estudiante pide un DVD prestado. Supongamos que P(B) = 0,40, P(D) = 0,30 y P(D||B) = 0,5.

  1. Calcule P(B D).
  2. Calcule P(B D).

Ejemplo 3.18

Los estudios demuestran que una de cada siete mujeres (aproximadamente el 14,3 %) que viven hasta los 90 años desarrollará cáncer de mama. Supongamos que de las mujeres que desarrollan cáncer de mama el resultado de la prueba es negativo en el 2 % de las ocasiones. Supongamos también que en la población general de mujeres, el resultado de la prueba de cáncer de mama es negativo en el 85 % de las ocasiones. Supongamos que B = la mujer desarrolla cáncer de mama y supongamos que N = el resultado de la prueba es negativo. Supongamos que se selecciona una mujer al azar.

Translation missing: es.problem

  1. ¿Cuál es la probabilidad de que la mujer desarrolle cáncer de mama? ¿Cuál es la probabilidad de que la mujer obtenga un resultado negativo?
  2. Dado que la mujer tiene cáncer de mama, ¿cuál es la probabilidad de que el resultado de la prueba sea negativo?
  3. ¿Cuál es la probabilidad de que la mujer tenga cáncer de mama Y el resultado de la prueba sea negativo?
  4. ¿Cuál es la probabilidad de que la mujer tenga cáncer de mama o de que el resultado de la prueba sea negativo?
  5. ¿Tener cáncer de mama y tener un resultado negativo en la prueba son eventos independientes?
  6. ¿Tener cáncer de mama y tener un resultado negativo en la prueba son mutuamente excluyentes?

Inténtelo 3.18

Una escuela tiene 200 estudiantes de último año, de los cuales 140 irán al instituto universitario el año siguiente. Cuarenta irán directamente a trabajar. El resto se está tomando un año sabático. Cincuenta de los estudiantes de último año que van al instituto universitario practican deportes. Treinta de los estudiantes de último año que van directamente a trabajar practican deportes. Cinco de los estudiantes de último año que se toman un año sabático practican deportes. ¿Cuál es la probabilidad de que un estudiante de último año vaya al instituto universitario y practique deportes?

Ejemplo 3.19

Translation missing: es.problem

Consulte la información en el Ejemplo 3.18. P = pruebas con resultado positivo.

  1. Dado que una mujer desarrolla cáncer de mama, ¿cuál es la probabilidad de que el resultado de la prueba sea positivo? Calcule P(P||B) = 1 - P(N||B).
  2. ¿Cuál es la probabilidad de que una mujer desarrolle cáncer de mama y el resultado de la prueba sea positivo? Calcule P(B P) = P(P||B)P(B).
  3. ¿Cuál es la probabilidad de que una mujer no desarrolle cáncer de mama? Calcule P(B′) = 1 – P(B).
  4. ¿Cuál es la probabilidad de que una mujer tenga un resultado positivo en la prueba de cáncer de mama? Calcule P(P) = 1 – P(N).

Inténtelo 3.19

Un estudiante va a la biblioteca. Supongamos que los eventos B = el estudiante pide prestado un libro y D = el estudiante pide prestado un DVD. Supongamos que P(B) = 0,40, P(D) = 0,30 y P(D||B) = 0,5.

  1. Calcule P(B′).
  2. Calcule P(D B).
  3. Calcule P(B||D).
  4. Calcule P(D B′).
  5. Calcule P(D||B′).
Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.