Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Introducción a la estadística empresarial

10.4 Comparación de dos proporciones de población independientes

Introducción a la estadística empresarial10.4 Comparación de dos proporciones de población independientes

Menú
Índice
  1. Prefacio
  2. 1 Muestreo y datos
    1. Introducción
    2. 1.1 Definiciones de estadística, probabilidad y términos clave
    3. 1.2 Datos, muestreo y variación de datos y muestreo
    4. 1.3 Niveles de medición
    5. 1.4 Diseño experimental y ética
    6. Términos clave
    7. Repaso del capítulo
    8. Tarea para la casa
    9. Referencias
    10. Soluciones
  3. 2 Estadística descriptiva
    1. Introducción
    2. 2.1 Datos mostrados
    3. 2.2 Medidas de la ubicación de los datos
    4. 2.3 Medidas del centro de los datos
    5. 2.4 Notación sigma y cálculo de la media aritmética
    6. 2.5 Media geométrica
    7. 2.6 Distorsión y media, mediana y moda
    8. 2.7 Medidas de la dispersión de los datos
    9. Términos clave
    10. Repaso del capítulo
    11. Repaso de fórmulas
    12. Práctica
    13. Tarea para la casa
    14. Resúmalo todo: tarea para la casa
    15. Referencias
    16. Soluciones
  4. 3 Temas de probabilidad
    1. Introducción
    2. 3.1 Terminología
    3. 3.2 Eventos mutuamente excluyentes e independientes
    4. 3.3 Dos reglas básicas de la probabilidad
    5. 3.4 Tablas de contingencia y árboles de probabilidad
    6. 3.5 Diagramas de Venn
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Uniéndolo todo: Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  5. 4 Variables aleatorias discretas
    1. Introducción
    2. 4.1 Distribución hipergeométrica
    3. 4.2 Distribución binomial
    4. 4.3 Distribución geométrica
    5. 4.4 Distribución de Poisson
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  6. 5 Variables aleatorias continuas
    1. Introducción
    2. 5.1 Propiedades de las funciones de densidad de probabilidad continuas
    3. 5.2 La distribución uniforme
    4. 5.3 La distribución exponencial
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  7. 6 La distribución normal
    1. Introducción
    2. 6.1 La distribución normal estándar
    3. 6.2 Uso de la distribución normal
    4. 6.3 Estimación de la binomial con la distribución normal
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  8. 7 El teorema del límite central
    1. Introducción
    2. 7.1 Teorema del límite central de las medias muestrales
    3. 7.2 Uso del teorema del límite central
    4. 7.3 Teorema del límite central de las proporciones
    5. 7.4 Factor de corrección de población finita
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  9. 8 Intervalos de confianza
    1. Introducción
    2. 8.1 Un intervalo de confianza para una desviación típica de la población, con un tamaño de muestra conocido o grande
    3. 8.2 Un intervalo de confianza para una desviación típica de población desconocida, caso de una muestra pequeña
    4. 8.3 Un intervalo de confianza para una proporción de población
    5. 8.4 Cálculo del tamaño de la muestra n: variables aleatorias continuas y binarias
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  10. 9 Pruebas de hipótesis con una muestra
    1. Introducción
    2. 9.1 Hipótesis nula y alternativa
    3. 9.2 Resultados y errores de tipo I y II
    4. 9.3 Distribución necesaria para la comprobación de la hipótesis
    5. 9.4 Ejemplos de pruebas de hipótesis completas
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  11. 10 Pruebas de hipótesis con dos muestras
    1. Introducción
    2. 10.1 Comparación de las medias de dos poblaciones independientes
    3. 10.2 Criterios de Cohen para efectos de tamaño pequeño, mediano y grande
    4. 10.3 Prueba de diferencias de medias: suponer varianzas de población iguales
    5. 10.4 Comparación de dos proporciones de población independientes
    6. 10.5 Dos medias poblacionales con desviaciones típicas conocidas
    7. 10.6 Muestras coincidentes o emparejadas
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  12. 11 La distribución chi-cuadrado
    1. Introducción
    2. 11.1 Datos sobre la distribución chi-cuadrado
    3. 11.2 Prueba de una sola varianza
    4. 11.3 Prueba de bondad de ajuste
    5. 11.4 Prueba de independencia
    6. 11.5 Prueba de homogeneidad
    7. 11.6 Comparación de las pruebas chi-cuadrado
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  13. 12 La distribución F y el anova de una vía
    1. Introducción
    2. 12.1 Prueba de dos varianzas
    3. 12.2 ANOVA de una vía
    4. 12.3 La distribución F y el cociente F
    5. 12.4 Datos sobre la distribución F
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  14. 13 Regresión lineal y correlación
    1. Introducción
    2. 13.1 El coeficiente de correlación r
    3. 13.2 Comprobación de la importancia del coeficiente de correlación
    4. 13.3 Ecuaciones lineales
    5. 13.4 La ecuación de regresión
    6. 13.5 Interpretación de los coeficientes de regresión: elasticidad y transformación logarítmica
    7. 13.6 Predicción con una ecuación de regresión
    8. 13.7 Cómo utilizar Microsoft Excel® para el análisis de regresión
    9. Términos clave
    10. Repaso del capítulo
    11. Práctica
    12. Soluciones
  15. A Cuadros estadísticos
  16. B Oraciones, símbolos y fórmulas matemáticas
  17. Índice

Cuando se realiza una prueba de hipótesis que compara dos proporciones de población independientes se deben dar las siguientes características:

  1. Las dos muestras independientes son muestras aleatorias que son independientes.
  2. El número de aciertos es, al menos, cinco y el número de fallos es, al menos, cinco para cada una de las muestras.
  3. La bibliografía, cada vez más extensa, afirma que la población deberá ser, como mínimo, 10 y hasta 20 veces el tamaño de la muestra. Así se evita que cada población sea objeto de un muestreo excesivo y que los resultados sean sesgados.

La comparación de dos proporciones, al igual que la comparación de dos medias, es de uso común. Si dos proporciones estimadas son diferentes, puede deberse a una diferencia en las poblaciones o al azar en el muestreo. La comprobación de la hipótesis permite determinar si una diferencia en las proporciones estimadas refleja una diferencia en las dos proporciones de la población.

Al igual que en el caso de las diferencias de medias muestrales, construimos una distribución muestral para las diferencias de proporciones muestrales: (pA'-pB')(pA'-pB')donde p A ' = X A n A p A ' = X A n A y p B ' = X B n B p B ' = X B n B son las proporciones de la muestra para los dos conjuntos de datos en cuestión. XA y XB son el número de aciertos en cada grupo de la muestra, respectivamente, y nA y nB son los tamaños de muestra respectivos de los dos grupos. De nuevo acudimos al teorema del límite central para hallar la distribución muestral con respecto a las diferencias en las proporciones de la muestra. También nos encontramos con que esta distribución muestral, al igual que las anteriores, se distribuye normalmente, tal y como demuestra el teorema del límite central, como se ve en la Figura 10.5.

Figura 10.5

En general, la hipótesis nula permite probar una diferencia de un valor determinado, 𝛿0, tal como hicimos para el caso de las diferencias de medias.

H0 : p1 p2 = 𝛿0 H0:p1p2=𝛿0
H1 : p1 p2 𝛿0 H1:p1p2𝛿0

Sin embargo, lo más común es la prueba de que las dos proporciones son iguales. Esto es,

H 0 : p A = p B H 0 : p A = p B
H a : p A p B H a : p A p B

Para llevar a cabo la prueba utilizamos una proporción combinada, pc.

La proporción combinada se calcula de la siguiente manera:
p c = x A + x B n A + n B p c = x A + x B n A + n B


El estadístico de prueba (puntuación z) es:
Zc = ( p A p B ) δ0 p c (1 p c )( 1 n A + 1 n B ) Zc= ( p A p B ) δ0 p c (1 p c )( 1 n A + 1 n B )

donde δ0 son las diferencias hipotéticas entre las dos proporciones y pc es la varianza agrupada de la fórmula anterior.

Ejemplo 10.6

translation missing: es.problem

Un banco acaba de adquirir otra sucursal, por lo que tiene clientes en este nuevo territorio. Les interesa la tasa de morosidad en su nuevo territorio. Desean comprobar la hipótesis de que la tasa de morosidad es diferente a la de su actual base de clientes. Hacen un muestreo de 200 expedientes en el área A, sus clientes actuales, y descubren que 20 han incumplido. En el área B, la de los nuevos clientes, otra muestra de 200 expedientes muestra que 12 han dejado de pagar sus préstamos. A un nivel de significación del 10 %, ¿podemos decir que los índices de impago son iguales o diferentes?

Inténtelo 10.6

Se están probando dos tipos de válvulas para determinar si hay una diferencia en las tolerancias de presión. Quince de una muestra aleatoria de 100 de la válvula A se agrietaron por debajo de 4.500 psi. Seis de una muestra aleatoria de 100 de la válvula B se agrietaron por debajo de 4.500 psi. Pruebe con un nivel de significación del 5 %.

Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.