Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Introducción a la estadística empresarial

1.4 Diseño experimental y ética

Introducción a la estadística empresarial1.4 Diseño experimental y ética

Menú
Índice
  1. Prefacio
  2. 1 Muestreo y datos
    1. Introducción
    2. 1.1 Definiciones de estadística, probabilidad y términos clave
    3. 1.2 Datos, muestreo y variación de datos y muestreo
    4. 1.3 Niveles de medición
    5. 1.4 Diseño experimental y ética
    6. Términos clave
    7. Repaso del capítulo
    8. Tarea para la casa
    9. Referencias
    10. Soluciones
  3. 2 Estadística descriptiva
    1. Introducción
    2. 2.1 Datos mostrados
    3. 2.2 Medidas de la ubicación de los datos
    4. 2.3 Medidas del centro de los datos
    5. 2.4 Notación sigma y cálculo de la media aritmética
    6. 2.5 Media geométrica
    7. 2.6 Distorsión y media, mediana y moda
    8. 2.7 Medidas de la dispersión de los datos
    9. Términos clave
    10. Repaso del capítulo
    11. Repaso de fórmulas
    12. Práctica
    13. Tarea para la casa
    14. Resúmalo todo: tarea para la casa
    15. Referencias
    16. Soluciones
  4. 3 Temas de probabilidad
    1. Introducción
    2. 3.1 Terminología
    3. 3.2 Eventos mutuamente excluyentes e independientes
    4. 3.3 Dos reglas básicas de la probabilidad
    5. 3.4 Tablas de contingencia y árboles de probabilidad
    6. 3.5 Diagramas de Venn
    7. Términos clave
    8. Repaso del capítulo
    9. Repaso de fórmulas
    10. Práctica
    11. Uniéndolo todo: Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  5. 4 Variables aleatorias discretas
    1. Introducción
    2. 4.1 Distribución hipergeométrica
    3. 4.2 Distribución binomial
    4. 4.3 Distribución geométrica
    5. 4.4 Distribución de Poisson
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  6. 5 Variables aleatorias continuas
    1. Introducción
    2. 5.1 Propiedades de las funciones de densidad de probabilidad continuas
    3. 5.2 La distribución uniforme
    4. 5.3 La distribución exponencial
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  7. 6 La distribución normal
    1. Introducción
    2. 6.1 La distribución normal estándar
    3. 6.2 Uso de la distribución normal
    4. 6.3 Estimación de la binomial con la distribución normal
    5. Términos clave
    6. Repaso del capítulo
    7. Repaso de fórmulas
    8. Práctica
    9. Tarea para la casa
    10. Referencias
    11. Soluciones
  8. 7 El teorema del límite central
    1. Introducción
    2. 7.1 Teorema del límite central de las medias muestrales
    3. 7.2 Uso del teorema del límite central
    4. 7.3 Teorema del límite central de las proporciones
    5. 7.4 Factor de corrección de población finita
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  9. 8 Intervalos de confianza
    1. Introducción
    2. 8.1 Un intervalo de confianza para una desviación típica de la población, con un tamaño de muestra conocido o grande
    3. 8.2 Un intervalo de confianza para una desviación típica de población desconocida, caso de una muestra pequeña
    4. 8.3 Un intervalo de confianza para una proporción de población
    5. 8.4 Cálculo del tamaño de la muestra n: variables aleatorias continuas y binarias
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  10. 9 Pruebas de hipótesis con una muestra
    1. Introducción
    2. 9.1 Hipótesis nula y alternativa
    3. 9.2 Resultados y errores de tipo I y II
    4. 9.3 Distribución necesaria para la comprobación de la hipótesis
    5. 9.4 Ejemplos de pruebas de hipótesis completas
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  11. 10 Pruebas de hipótesis con dos muestras
    1. Introducción
    2. 10.1 Comparación de las medias de dos poblaciones independientes
    3. 10.2 Criterios de Cohen para efectos de tamaño pequeño, mediano y grande
    4. 10.3 Prueba de diferencias de medias: suponer varianzas de población iguales
    5. 10.4 Comparación de dos proporciones de población independientes
    6. 10.5 Dos medias poblacionales con desviaciones típicas conocidas
    7. 10.6 Muestras coincidentes o emparejadas
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  12. 11 La distribución chi-cuadrado
    1. Introducción
    2. 11.1 Datos sobre la distribución chi-cuadrado
    3. 11.2 Prueba de una sola varianza
    4. 11.3 Prueba de bondad de ajuste
    5. 11.4 Prueba de independencia
    6. 11.5 Prueba de homogeneidad
    7. 11.6 Comparación de las pruebas chi-cuadrado
    8. Términos clave
    9. Repaso del capítulo
    10. Repaso de fórmulas
    11. Práctica
    12. Tarea para la casa
    13. Resúmalo todo: tarea para la casa
    14. Referencias
    15. Soluciones
  13. 12 La distribución F y el anova de una vía
    1. Introducción
    2. 12.1 Prueba de dos varianzas
    3. 12.2 ANOVA de una vía
    4. 12.3 La distribución F y el cociente F
    5. 12.4 Datos sobre la distribución F
    6. Términos clave
    7. Repaso del capítulo
    8. Repaso de fórmulas
    9. Práctica
    10. Tarea para la casa
    11. Referencias
    12. Soluciones
  14. 13 Regresión lineal y correlación
    1. Introducción
    2. 13.1 El coeficiente de correlación r
    3. 13.2 Comprobación de la importancia del coeficiente de correlación
    4. 13.3 Ecuaciones lineales
    5. 13.4 La ecuación de regresión
    6. 13.5 Interpretación de los coeficientes de regresión: elasticidad y transformación logarítmica
    7. 13.6 Predicción con una ecuación de regresión
    8. 13.7 Cómo utilizar Microsoft Excel® para el análisis de regresión
    9. Términos clave
    10. Repaso del capítulo
    11. Práctica
    12. Soluciones
  15. A Cuadros estadísticos
  16. B Oraciones, símbolos y fórmulas matemáticas
  17. Índice

¿La aspirina reduce el riesgo de infarto? ¿Una marca de abono es más eficaz para el cultivo de rosas que otra? ¿El cansancio es tan peligroso para un conductor como la influencia del alcohol? Este tipo de preguntas se responden con experimentos aleatorios. En este módulo aprenderá aspectos importantes del diseño experimental. Un diseño adecuado del estudio garantiza la obtención de datos fiables y precisos.

El propósito de un experimento es investigar la relación entre dos variables. Cuando una variable provoca un cambio en otra, llamamos a la primera variable la variable independiente o explicativa. La variable afectada se llama variable dependiente o variable de respuesta: estímulo, respuesta. En un experimento aleatorio, el investigador manipula los valores de la variable explicativa y mide los cambios resultantes en la variable de respuesta. Los diferentes valores de la variable explicativa se denominan tratamientos. Una unidad experimental es un único objeto o persona que se va a medir.

Quiere investigar la eficacia de la vitamina E en la prevención de enfermedades. Usted recluta a un grupo de sujetos y les pregunta si toman regularmente vitamina E. Observa que los sujetos que toman vitamina E, en promedio, presentan una salud mejor que quienes no la toman. ¿Esto prueba que la vitamina E es eficaz en la prevención de enfermedades? No es así. Hay muchas diferencias entre los dos grupos comparados, además del consumo de vitamina E. Las personas que toman vitamina E con regularidad suelen tomar otras medidas para mejorar su salud: ejercicio, dieta, otros suplementos vitamínicos, elección de no fumar, etc. Cualquiera de estos factores podría estar influyendo en la salud. Como se ha descrito, este estudio no demuestra que la vitamina E sea la clave para la prevención de enfermedades.

Las variables adicionales que pueden enturbiar un estudio se denominan variables ocultas. Para demostrar que la variable explicativa provoca un cambio en la variable de respuesta, es necesario aislar la variable explicativa. La investigadora debe diseñar su experimento de forma que solo haya una diferencia entre los grupos que se comparan: los tratamientos previstos. Esto se consigue mediante la asignación aleatoria de unidades experimentales a grupos de tratamiento. Cuando los sujetos se asignan a los tratamientos de forma aleatoria, todas las variables ocultas potenciales se reparten por igual entre los grupos. En este punto, la única diferencia entre los grupos es la impuesta por el investigador. Los diferentes resultados medidos en la variable de respuesta, por tanto, deben ser una consecuencia directa de los diferentes tratamientos. De este modo, un experimento puede demostrar una conexión causa-efecto entre las variables explicativas y las de respuesta.

El poder de la sugestión puede tener una importante influencia en el resultado de un experimento. Los estudios han demostrado que la expectativa del participante en el estudio puede ser tan importante como el medicamento real. En un estudio sobre fármacos que mejoran el desempeño, los investigadores señalaron:

Los resultados mostraron que creer que se había tomado la sustancia provocaba tiempos de [desempeño] casi tan rápidos como los asociados al consumo del propio fármaco. Por el contrario, la toma del fármaco sin conocimiento no produjo un aumento significativo del desempeño. 1.

Cuando la participación en un estudio provoca una respuesta física del participante, es difícil aislar los efectos de la variable explicativa. Para contrarrestar el poder de la sugestión, los investigadores reservaron un grupo de tratamiento como grupo de control. Este grupo recibe un tratamiento placebo, es decir, un tratamiento que no puede influir en la variable de respuesta. El grupo de control ayuda a los investigadores a equilibrar los efectos de estar en un experimento con los efectos de los tratamientos activos. Por supuesto, si usted participa en un estudio y sabe que está recibiendo una píldora que no contiene ningún medicamento real, entonces el poder de la sugestión ya no es un factor. Que un experimento aleatorio sea ciego preserva el poder de la sugestión. Cuando una persona participa en un estudio de investigación ciego, no sabe quién recibe el tratamiento activo y quién el placebo. Un experimento doble ciego es aquel en el que tanto los sujetos como los investigadores que participan en él no conocen la información del fármaco.

Ejemplo 1.19

Translation missing: es.problem

La Fundación para el Tratamiento y la Investigación del Olfato y el Gusto realizó un estudio para investigar si el olor puede afectar el aprendizaje. Los sujetos completaron laberintos varias veces con máscaras puestas. Completaron los laberintos de lápiz y papel tres veces con máscaras con aroma floral y tres veces con máscaras sin aroma. Los participantes se asignaron al azar a ponerse la máscara floral durante los tres primeros ensayos o durante los tres últimos. En cada ensayo, los investigadores registraron el tiempo que se tardaban en completar el laberinto y la impresión de los sujetos sobre el olor de la máscara: positivo, negativo o neutro.

  1. Describa las variables explicativas y de respuesta de este estudio.
  2. ¿Cuáles son los tratamientos?
  3. Identifique cualquier variable oculta que pueda interferir en este estudio.
  4. ¿Es posible que este estudio se haga ciego?

Notas a pie de página

  • 1(McClung, M. Collins, D. “Because I know it will!”: placebo effects of an ergogenic aid on athletic performance. Journal of Sport & Exercise Psychology. Junio de 2007. 29(3):382-94. Web. 30 de abril de 2013)
Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/introducci%C3%B3n-estad%C3%ADstica-empresarial/pages/1-introduccion
Información sobre citas

© 28 ene. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.