Una vez que tenga un conjunto de datos, tendrá que organizarlos para poder analizar la frecuencia con la que aparece cada dato en el conjunto. Sin embargo, al calcular la frecuencia, es posible que tenga que redondear sus respuestas para que sean lo más precisas posible.
Niveles de medición
La forma de medir un conjunto de datos se denomina nivel de medición. Los procedimientos estadísticos correctos dependen de que el investigador esté familiarizado con los niveles de medición. No todas las operaciones estadísticas se pueden usar con todos los conjuntos de datos. Los datos se pueden clasificar en cuatro niveles de medición. Son (de menor a mayor nivel):
- Nivel de escala nominal
- Nivel de escala ordinal
- Nivel de escala de intervalos
- Nivel de escala de cociente
Los datos que se miden mediante una escala nominal son cualitativos (categóricos). Categorías, colores, nombres, etiquetas y alimentos favoritos junto con las respuestas de sí o no son ejemplos de datos de nivel nominal. Los datos de escala nominal no están ordenados. Por ejemplo, intentar clasificar a las personas según su comida favorita no tiene ningún sentido. Poner la pizza en primer lugar y el sushi en segundo no tiene sentido.
Las compañías de teléfonos inteligentes son otro ejemplo de datos de escala nominal. Los datos son los nombres de las compañías que fabrican teléfonos inteligentes, pero no hay un orden consensuado de estas marcas, aunque la gente pueda tener preferencias personales. Los datos de escala nominal no se pueden usar en cálculos.
Los datos que se miden con una escala ordinal son similares a los datos de la escala nominal, pero hay una gran diferencia. Los datos de la escala ordinal se pueden ordenar. Un ejemplo de datos de escala ordinal es una lista de los cinco mejores parques nacionales de Estados Unidos. Los cinco principales parques nacionales de Estados Unidos se pueden clasificar del uno al cinco, pero no podemos medir las diferencias entre los datos.
Otro ejemplo de uso de la escala ordinal es una encuesta sobre un crucero en la que las respuestas son “excelente”, “bueno”, “satisfactorio” e “insatisfactorio”. Estas respuestas están ordenadas de la respuesta más deseada a la menos deseada. Pero las diferencias entre dos datos no se pueden medir. Al igual que los datos de la escala nominal, los datos de la escala ordinal no se pueden usar en cálculos.
Los datos que se miden con la escala de intervalos son similares a los datos de nivel ordinal porque tienen un orden definido, pero hay una diferencia entre los datos. Las diferencias entre los datos de la escala de intervalos se pueden medir aunque los datos no tengan un punto de partida.
Las escalas de temperatura como Celsius (C) y Fahrenheit (F) se miden utilizando la escala de intervalos. En ambas medidas de temperatura, 40° es igual a 100° menos 60°. Las diferencias tienen sentido. Pero los 0 grados no porque, en ambas escalas, el 0 no es la temperatura mínima absoluta. Existen temperaturas como –10 °F y –15 °C que son más frías que el 0.
Los datos a nivel de intervalo pueden utilizarse en cálculos, pero no se puede hacer un tipo de comparación. 80 °C no es cuatro veces más caliente que 20 °C (ni 80 °F es cuatro veces más caliente que 20 °F). El cociente de 80 a 20 (o de cuatro a uno) no tiene sentido.
Los datos que se miden con la escala de cociente se encargan del problema de las proporciones y ofrecen más información. Los datos de la escala de cociente son como los datos de la escala de intervalos, pero tienen un punto 0 y se pueden calcular cocientes. Por ejemplo, las calificaciones de cuatro exámenes finales de Estadística de opción múltiple son 80, 68, 20 y 92 (sobre 100 puntos posibles). Los exámenes son calificados por máquina.
Los datos se pueden ordenar de menor a mayor: 20, 68, 80, 92.
Las diferencias entre los datos tienen un significado. La calificación de 92 es superior a la de 68 por 24 puntos. Se pueden calcular cocientes. La calificación más baja es 0. Así que 80 es cuatro veces 20. La calificación de 80 es cuatro veces mejor que la de 20.
Frecuencia
Se les preguntó a veinte estudiantes cuántas horas trabajaban al día. Sus respuestas, en horas, son las siguientes: 5; 6; 3; 3; 2; 4; 7; 5; 2; 3; 5; 6; 5; 4; 4; 3; 5; 2; 5; 3.
La Tabla 1.5 enumera los diferentes valores de los datos en orden ascendente y sus frecuencias.
Valor de los datos | Frecuencia |
---|---|
2 | 3 |
3 | 5 |
4 | 3 |
5 | 6 |
6 | 2 |
7 | 1 |
Una frecuencia es el número de veces que se produce un valor de los datos. Según la Tabla 1.5, hay tres estudiantes que trabajan dos horas, cinco estudiantes que trabajan tres horas y así sucesivamente. La suma de los valores de la columna de frecuencia, 20, representa el número total de estudiantes incluidos en la muestra.
Una frecuencia relativa es el cociente (fracción o proporción) entre el número de veces que se produce un valor de los datos en el conjunto de todos los resultados y el número total de resultados. Para hallar las frecuencias relativas, divida cada frecuencia entre el número total de estudiantes de la muestra, en este caso, 20. Las frecuencias relativas se pueden escribir como fracciones, porcentajes o decimales.
Valor de los datos | Frecuencia | Frecuencia relativa |
---|---|---|
2 | 3 | o 0,15 |
3 | 5 | o 0,25 |
4 | 3 | o 0,15 |
5 | 6 | o 0,30 |
6 | 2 | o 0,10 |
7 | 1 | o 0,05 |
La suma de los valores de la columna de frecuencia relativa de la Tabla 1.6 es , o 1.
La frecuencia relativa acumulada es la acumulación de las frecuencias relativas anteriores. Para hallar las frecuencias relativas acumuladas se suman todas las frecuencias relativas anteriores a la frecuencia relativa de la fila actual, como se muestra en la Tabla 1.7.
Valor de los datos | Frecuencia | Frecuencia relativa | Frecuencia relativa acumulada |
---|---|---|---|
2 | 3 | o 0,15 | 0,15 |
3 | 5 | o 0,25 | 0,15 + 0,25 = 0,40 |
4 | 3 | o 0,15 | 0,40 + 0,15 = 0,55 |
5 | 6 | o 0,30 | 0,55 + 0,30 = 0,85 |
6 | 2 | o 0,10 | 0,85 + 0,10 = 0,95 |
7 | 1 | o 0,05 | 0,95 + 0,05 = 1,00 |
La última entrada de la columna de frecuencia relativa acumulada es uno, lo que indica que se ha acumulado el cien por ciento de los datos.
NOTA
Debido al redondeo, es posible que la columna de frecuencia relativa no sume siempre uno, y que la última entrada de la columna de frecuencia relativa acumulada no sea uno. Sin embargo, cada uno de ellos debería estar cerca de uno.
La Tabla 1.8 representa las alturas, en pulgadas, de una muestra de 100 hombres jugadores de fútbol semiprofesionales.
Estatura (en pulgadas) | Frecuencia | Frecuencia relativa | Frecuencia relativa acumulada |
---|---|---|---|
59,95–61,95 | 5 | = 0,05 | 0,05 |
61.95–63.95 | 3 | = 0,03 | 0,05 + 0,03 = 0,08 |
63.95–65.95 | 15 | = 0,15 | 0,08 + 0,15 = 0,23 |
65.95–67.95 | 40 | = 0,40 | 0,23 + 0,40 = 0,63 |
67.95–69.95 | 17 | = 0,17 | 0,63 + 0,17 = 0,80 |
69.95–71.95 | 12 | = 0,12 | 0,80 + 0,12 = 0,92 |
71.95–73.95 | 7 | = 0,07 | 0,92 + 0,07 = 0,99 |
73.95–75.95 | 1 | = 0,01 | 0,99 + 0,01 = 1,00 |
Total = 100 | Total = 1,00 |
Los datos de esta tabla se han agrupado en los siguientes intervalos:
- de 59,95 a 61,95 pulgadas
- de 61,95 a 63,95 pulgadas
- de 63,95 a 65,95 pulgadas
- de 65,95 a 67,95 pulgadas
- de 67,95 a 69,95 pulgadas
- de 69,95 a 71,95 pulgadas
- de 71,95 a 73,95 pulgadas
- de 73,95 a 75,95 pulgadas
En esta muestra hay cinco jugadores cuyas alturas están dentro del intervalo de 59,95 a 61,95 pulgadas, tres dentro del intervalo de 61,95 a 63,95 pulgadas, 15 dentro del intervalo de 63,95 a 65,95 pulgadas, 40 dentro del intervalo de 65,95 a 67,95 pulgadas, 17 dentro del intervalo de 67,95 a 69,95 pulgadas, 12 jugadores dentro del intervalo de 69,95 a 71,95, siete dentro del intervalo de 71,95 a 73,95 y un jugador cuya altura está dentro del intervalo de 73,95 a 75,95. Todas las alturas caen entre los puntos finales de un intervalo y no en los puntos finales.
Ejemplo 1.14
Translation missing: es.problem
A partir de la Tabla 1.8, calcule el porcentaje de alturas que son inferiores a 65,95 pulgadas.
Solución
Si se observan la primera, la segunda y la tercera filas, las alturas son todas inferiores a 65,95 pulgadas. Hay 5 + 3 + 15 = 23 jugadores cuya altura es inferior a 65,95 pulgadas. El porcentaje de alturas inferiores a 65,95 pulgadas es entonces o el 23 %. Este porcentaje es la entrada de frecuencia relativa acumulada en la tercera fila.
Inténtelo 1.14
La Tabla 1.9 muestra la cantidad, en pulgadas, de precipitaciones anuales en una muestra de ciudades.
Precipitaciones (en pulgadas) | Frecuencia | Frecuencia relativa | Frecuencia relativa acumulada |
---|---|---|---|
2,95-4,97 | 6 | = 0,12 | 0,12 |
4,97-6,99 | 7 | = 0,14 | 0,12 + 0,14 = 0,26 |
6,99-9,01 | 15 | = 0,30 | 0,26 + 0,30 = 0,56 |
9,01-11,03 | 8 | = 0,16 | 0,56 + 0,16 = 0,72 |
11,03-13,05 | 9 | = 0,18 | 0,72 + 0,18 = 0,90 |
13,05-15,07 | 5 | = 0,10 | 0,90 + 0,10 = 1,00 |
Total = 50 | Total = 1,00 |
A partir de la Tabla 1.9, calcule el porcentaje de precipitación que es inferior a 9,01 pulgadas.
Ejemplo 1.15
Translation missing: es.problem
A partir de la Tabla 1.8, calcule el porcentaje de alturas que se encuentran entre 61,95 y 65,95 pulgadas.
Solución
Sume las frecuencias relativas en la segunda y tercera filas: 0,03 + 0,15 = 0,18 o 18 %.
Inténtelo 1.15
A partir de la Tabla 1.9, calcule el porcentaje de precipitaciones que se encuentra entre 6,99 y 13,05 pulgadas.
Ejemplo 1.16
Translation missing: es.problem
Utilice las alturas de los 100 hombres jugadores de fútbol semiprofesionales en la Tabla 1.8. Rellene los espacios en blanco y compruebe sus respuestas.
- El porcentaje de alturas que van de 67,95 a 71,95 pulgadas es: ____.
- El porcentaje de alturas que van de 67,95 a 73,95 pulgadas es: ____.
- El porcentaje de alturas superiores a 65,95 pulgadas es: ____.
- El número de jugadores de la muestra que miden entre 61,95 y 71,95 pulgadas es: ____.
- ¿Qué tipo de datos son las alturas?
- Describa cómo podría reunir estos datos (las alturas) para que los datos sean característicos de todos los jugadores hombres de fútbol semiprofesionales.
Recuerde, usted cuentas frecuencias. Para hallar la frecuencia relativa, divida la frecuencia entre el número total de valores de datos. Para hallar la frecuencia relativa acumulada se suman todas las frecuencias relativas anteriores a la frecuencia relativa de la fila actual.
Solución
- 29 %
- 36 %
- 77 %
- 87
- cuantitativo continuo
- obtener las listas de cada equipo y elegir una muestra aleatoria simple de cada uno
Ejemplo 1.17
Se les preguntó a diecinueve personas cuántas millas recorren cada día para ir al trabajo, con una aproximación de una milla. Los datos son los siguientes: 2; 5; 7; 3; 2; 10; 18; 15; 20; 7; 10; 18; 5; 12; 13; 12; 4; 5; 10. Se produjo la Tabla 1.10:
Datos | Frecuencia | Frecuencia relativa | Frecuencia relativa acumulada |
---|---|---|---|
3 | 3 | 0,1579 | |
4 | 1 | 0,2105 | |
5 | 3 | 0,1579 | |
7 | 2 | 0,2632 | |
10 | 3 | 0,4737 | |
12 | 2 | 0,7895 | |
13 | 1 | 0,8421 | |
15 | 1 | 0,8948 | |
18 | 1 | 0,9474 | |
20 | 1 | 1,0000 |
Translation missing: es.problem
- ¿La tabla es correcta? Si no es correcta, ¿qué está errado?
- Verdadero o falso: El tres por ciento de los encuestados se desplazan tres millas. Si la afirmación es incorrecta, ¿cuál debería serlo? Si la tabla es incorrecta, haga las correcciones.
- ¿Qué fracción de las personas encuestadas se desplaza cinco o siete millas?
- ¿Qué fracción de las personas encuestadas se desplaza 12 millas o más? ¿Menos de 12 millas? ¿Entre cinco y 13 millas (sin incluir cinco y 13 millas)?
Solución
- No. La columna de frecuencia suma 18, no 19. No todas las frecuencias relativas acumuladas son correctas.
- Falso. La frecuencia para tres millas debería ser una; para dos millas (omitidas), dos. La columna de frecuencia relativa acumulada debe decir: 0,1052, 0,1579, 0,2105, 0,3684, 0,4737, 0,6316, 0,7368, 0,7895, 0,8421, 0,9474, 1,0000.
- , ,
Inténtelo 1.17
La Tabla 1.9 representa la cantidad, en pulgadas, de precipitaciones anuales en una muestra de ciudades. ¿Qué fracción de las ciudades recibe entre 11,03 y 13,05 pulgadas de lluvia al año?
Ejemplo 1.18
La Tabla 1.11 contiene el número total de muertes en todo el mundo a causa de terremotos en el periodo comprendido entre 2000 y 2012.
Año | Número total de muertes |
---|---|
2000 | 231 |
2001 | 21.357 |
2002 | 11.685 |
2003 | 33.819 |
2004 | 228.802 |
2005 | 88.003 |
2006 | 6.605 |
2007 | 712 |
2008 | 88.011 |
2009 | 1.790 |
2010 | 320.120 |
2011 | 21.953 |
2012 | 768 |
Total | 823.856 |
Translation missing: es.problem
Responda las siguientes preguntas.
- ¿Cuál es la frecuencia de las muertes medidas desde 2006 hasta 2009?
- ¿Qué porcentaje de muertes se produjo después de 2009?
- ¿Cuál es la frecuencia relativa de las muertes ocurridas en 2003 o antes?
- ¿Cuál es el porcentaje de muertes que se produjeron en 2004?
- ¿Qué tipo de datos son los números de las muertes?
- La escala de Richter se utiliza para cuantificar la energía producida por un terremoto. Ejemplos de números de la escala de Richter son 2,3; 4,0; 6,1 y 7,0. ¿Qué tipo de datos son estas cifras?
Solución
- 97.118 (11,8 %)
- 41,6 %
- 67.092/823.356 o 0,081 o 8,1 %
- 27,8 %
- Discreto cuantitativo
- Cuantitativo continuo
Inténtelo 1.18
La Tabla 1.12 contiene el número total de accidentes mortales de tráfico de vehículos de motor en Estados Unidos para el periodo de 1994 a 2011.
Año | Número total de accidentes | Año | Número total de accidentes |
---|---|---|---|
1994 | 36.254 | 2004 | 38.444 |
1995 | 37.241 | 2005 | 39.252 |
1996 | 37.494 | 2006 | 38.648 |
1997 | 37.324 | 2007 | 37.435 |
1998 | 37.107 | 2008 | 34.172 |
1999 | 37.140 | 2009 | 30.862 |
2000 | 37.526 | 2010 | 30.296 |
2001 | 37.862 | 2011 | 29.757 |
2002 | 38.491 | Total | 653.782 |
2003 | 38.477 |
Responda las siguientes preguntas.
- ¿Cuál es la frecuencia de las muertes medidas desde 2000 hasta 2004?
- ¿Qué porcentaje de muertes se produjo después de 2006?
- ¿Cuál es la frecuencia relativa de las muertes ocurridas en 2000 o antes?
- ¿Cuál es el porcentaje de muertes que se produjeron en 2011?
- ¿Cuál es la frecuencia relativa acumulada en 2006? Explique qué le dice este número sobre los datos.