Intermediate Algebra

## Learning Objectives

By the end of this section, you will be able to:
• Use polynomial multiplication to multiply radical expressions

## Be Prepared 8.4

Before you get started, take this readiness quiz.

1. Add: $3x2+9x−5−(x2−2x+3).3x2+9x−5−(x2−2x+3).$
If you missed this problem, review Example 5.5.
2. Simplify: $(2+a)(4−a).(2+a)(4−a).$
If you missed this problem, review Example 5.28.
3. Simplify: $(9−5y)2.(9−5y)2.$
If you missed this problem, review Example 5.31.

Adding radical expressions with the same index and the same radicand is just like adding like terms. We call radicals with the same index and the same radicand like radicals to remind us they work the same as like terms.

We add and subtract like radicals in the same way we add and subtract like terms. We know that $3x+8x3x+8x$ is $11x.11x.$ Similarly we add $3x+8x3x+8x$ and the result is $11x.11x.$

Think about adding like terms with variables as you do the next few examples. When you have like radicals, you just add or subtract the coefficients. When the radicals are not like, you cannot combine the terms.

## Example 8.36

Simplify: $22−7222−72$ $5y3+4y35y3+4y3$ $7x4−2y4.7x4−2y4.$

## Try It 8.71

Simplify: $82−9282−92$ $4x3+7x34x3+7x3$ $3x4−5y4.3x4−5y4.$

## Try It 8.72

Simplify: $53−9353−93$ $5y3+3y35y3+3y3$ $5m4−2m3.5m4−2m3.$

For radicals to be like, they must have the same index and radicand. When the radicands contain more than one variable, as long as all the variables and their exponents are identical, the radicands are the same.

## Example 8.37

Simplify: $25n−65n+45n25n−65n+45n$ $3xy4+53xy4−43xy4.3xy4+53xy4−43xy4.$

## Try It 8.73

Simplify: $7x−77x+47x7x−77x+47x$ $45xy4+25xy4−75xy4.45xy4+25xy4−75xy4.$

## Try It 8.74

Simplify: $43y−73y+23y43y−73y+23y$ $67mn3+7mn3−47mn3.67mn3+7mn3−47mn3.$

Remember that we always simplify radicals by removing the largest factor from the radicand that is a power of the index. Once each radical is simplified, we can then decide if they are like radicals.

## Example 8.38

Simplify: $20+3520+35$ $243−3753243−3753$ $12484−232434.12484−232434.$

## Try It 8.75

Simplify: $18+6218+62$ $6163−225036163−22503$ $23813−12243.23813−12243.$

## Try It 8.76

Simplify: $27+4327+43$ $453−7403453−7403$ $121283−53543.121283−53543.$

In the next example, we will remove both constant and variable factors from the radicals. Now that we have practiced taking both the even and odd roots of variables, it is common practice at this point for us to assume all variables are greater than or equal to zero so that absolute values are not needed. We will use this assumption throughout the rest of this chapter.

## Example 8.39

Simplify: $950m2−648m2950m2−648m2$ $54n53−16n53.54n53−16n53.$

## Try It 8.77

Simplify: $32m7−50m732m7−50m7$ $135x73−40x73.135x73−40x73.$

## Try It 8.78

Simplify: $27p3−48p327p3−48p3$ $256y53−32n53.256y53−32n53.$

We have used the Product Property of Roots to simplify square roots by removing the perfect square factors. We can use the Product Property of Roots ‘in reverse’ to multiply square roots. Remember, we assume all variables are greater than or equal to zero.

We will rewrite the Product Property of Roots so we see both ways together.

## Product Property of Roots

For any real numbers, $anan$ and $bn,bn,$ and for any integer $n≥2n≥2$

$abn=an·bnandan·bn=abnabn=an·bnandan·bn=abn$

When we multiply two radicals they must have the same index. Once we multiply the radicals, we then look for factors that are a power of the index and simplify the radical whenever possible.

Multiplying radicals with coefficients is much like multiplying variables with coefficients. To multiply $4x·3y4x·3y$ we multiply the coefficients together and then the variables. The result is 12xy. Keep this in mind as you do these examples.

## Example 8.40

Simplify: $(62)(310)(62)(310)$ $(−543)(−463).(−543)(−463).$

## Try It 8.79

Simplify: $(32)(230)(32)(230)$ $(2183)(−363).(2183)(−363).$

## Try It 8.80

Simplify: $(33)(36)(33)(36)$ $(−493)(363).(−493)(363).$

We follow the same procedures when there are variables in the radicands.

## Example 8.41

Simplify: $(106p3)(43p)(106p3)(43p)$ $(220y24)(328y34).(220y24)(328y34).$

## Try It 8.81

Simplify: $(66x2)(830x4)(66x2)(830x4)$ $(−412y34)(−8y34).(−412y34)(−8y34).$

## Try It 8.82

Simplify: $(26y4)(1230y)(26y4)(1230y)$ $(−49a34)(327a24).(−49a34)(327a24).$

## Use Polynomial Multiplication to Multiply Radical Expressions

In the next a few examples, we will use the Distributive Property to multiply expressions with radicals. First we will distribute and then simplify the radicals when possible.

## Example 8.42

Simplify: $6(2+18)6(2+18)$ $93(5−183).93(5−183).$

## Try It 8.83

Simplify: $6(1+36)6(1+36)$ $43(−2−63).43(−2−63).$

## Try It 8.84

Simplify: $8(2−58)8(2−58)$ $33(−93−63).33(−93−63).$

When we worked with polynomials, we multiplied binomials by binomials. Remember, this gave us four products before we combined any like terms. To be sure to get all four products, we organized our work—usually by the FOIL method.

## Example 8.43

Simplify: $(3−27)(4−27)(3−27)(4−27)$ $(x3−2)(x3+4).(x3−2)(x3+4).$

## Try It 8.85

Simplify: $(6−37)(3+47)(6−37)(3+47)$ $(x3−2)(x3−3).(x3−2)(x3−3).$

## Try It 8.86

Simplify: $(2−311)(4−11)(2−311)(4−11)$ $(x3+1)(x3+3).(x3+1)(x3+3).$

## Example 8.44

Simplify: $(32−5)(2+45).(32−5)(2+45).$

## Try It 8.87

Simplify: $(53−7)(3+27)(53−7)(3+27)$

## Try It 8.88

Simplify: $(6−38)(26+8)(6−38)(26+8)$

Recognizing some special products made our work easier when we multiplied binomials earlier. This is true when we multiply radicals, too. The special product formulas we used are shown here.

## Special Products

$Binomial SquaresProduct of Conjugates(a+b)2=a2+2ab+b2(a+b)(a−b)=a2−b2(a−b)2=a2−2ab+b2Binomial SquaresProduct of Conjugates(a+b)2=a2+2ab+b2(a+b)(a−b)=a2−b2(a−b)2=a2−2ab+b2$

We will use the special product formulas in the next few examples. We will start with the Product of Binomial Squares Pattern.

## Example 8.45

Simplify: $(2+3)2(2+3)2$ $(4−25)2.(4−25)2.$

## Try It 8.89

Simplify: $(10+2)2(10+2)2$ $(1+36)2.(1+36)2.$

## Try It 8.90

Simplify: $(6−5)2(6−5)2$ $(9−210)2.(9−210)2.$

In the next example, we will use the Product of Conjugates Pattern. Notice that the final product has no radical.

## Example 8.46

Simplify: $(5−23)(5+23).(5−23)(5+23).$

## Try It 8.91

Simplify: $(3−25)(3+25)(3−25)(3+25)$

## Try It 8.92

Simplify: $(4+57)(4−57).(4+57)(4−57).$

## Section 8.4 Exercises

### Practice Makes Perfect

In the following exercises, simplify.

165.

$82−5282−52$ $5m3+2m35m3+2m3$ $8m4−2m48m4−2m4$

166.

$72−3272−32$ $7p3+2p37p3+2p3$ $5x3−3x35x3−3x3$

167.

$35+6535+65$ $9a3+3a39a3+3a3$ $52z4+2z452z4+2z4$

168.

$45+8545+85$ $m3−4m3m3−4m3$ $n+3nn+3n$

169.

$32a−42a+52a32a−42a+52a$ $53ab4−33ab4−23ab453ab4−33ab4−23ab4$

170.

$11b−511b+311b11b−511b+311b$ $811cd4+511cd4−911cd4811cd4+511cd4−911cd4$

171.

$83c+23c−93c83c+23c−93c$ $24pq3−54pq3+44pq324pq3−54pq3+44pq3$

172.

$35d+85d−115d35d+85d−115d$ $112rs3−92rs3+32rs3112rs3−92rs3+32rs3$

173.

$27−7527−75$ $403−3203403−3203$ $12324+23162412324+231624$

174.

$72−9872−98$ $243+813243+813$ $12804−23405412804−234054$

175.

$48+2748+27$ $543+1283543+1283$ $654−32804654−32804$

176.

$45+8045+80$ $813−1923813−1923$ $52804+73405452804+734054$

177.

$72a5−50a572a5−50a5$ $980p44−6405p44980p44−6405p44$

178.

$48b5−75b548b5−75b5$ $864q63−3125q63864q63−3125q63$

179.

$80c7−20c780c7−20c7$ $2162r104+432r1042162r104+432r104$

180.

$96d9−24d996d9−24d9$ $5243s64+23s645243s64+23s64$

181.

$3 128 y 2 + 4 y 162 − 8 98 y 2 3 128 y 2 + 4 y 162 − 8 98 y 2$

182.

$3 75 y 2 + 8 y 48 − 300 y 2 3 75 y 2 + 8 y 48 − 300 y 2$

In the following exercises, simplify.

183.

$(−23)(318)(−23)(318)$ $(843)(−4183)(843)(−4183)$

184.

$(−45)(510)(−45)(510)$ $(−293)(793)(−293)(793)$

185.

$(56)(−12)(56)(−12)$ $(−2184)(−94)(−2184)(−94)$

186.

$(−27)(−214)(−27)(−214)$ $(−384)(−564)(−384)(−564)$

187.

$(412z3)(39z)(412z3)(39z)$ $(53x33)(318x33)(53x33)(318x33)$

188.

$(32x3)(718x2)(32x3)(718x2)$ $(−620a23)(−216a33)(−620a23)(−216a33)$

189.

$(−27z3)(314z8)(−27z3)(314z8)$ $(28y24)(−212y34)(28y24)(−212y34)$

190.

$(42k5)(−332k6)(42k5)(−332k6)$ $(−6b34)(38b34)(−6b34)(38b34)$

Use Polynomial Multiplication to Multiply Radical Expressions

In the following exercises, multiply.

191.

$7(5+27)7(5+27)$ $63(4+183)63(4+183)$

192.

$11(8+411)11(8+411)$ $33(93+183)33(93+183)$

193.

$11(−3+411)11(−3+411)$ $34(544+184)34(544+184)$

194.

$2(−5+92)2(−5+92)$ $24(124+244)24(124+244)$

195.

$( 7 + 3 ) ( 9 − 3 ) ( 7 + 3 ) ( 9 − 3 )$

196.

$( 8 − 2 ) ( 3 + 2 ) ( 8 − 2 ) ( 3 + 2 )$

197.

$(9−32)(6+42)(9−32)(6+42)$ $(x3−3)(x3+1)(x3−3)(x3+1)$

198.

$(3−27)(5−47)(3−27)(5−47)$ $(x3−5)(x3−3)(x3−5)(x3−3)$

199.

$(1+310)(5−210)(1+310)(5−210)$ $(2x3+6)(x3+1)(2x3+6)(x3+1)$

200.

$(7−25)(4+95)(7−25)(4+95)$ $(3x3+2)(x3−2)(3x3+2)(x3−2)$

201.

$( 3 + 10 ) ( 3 + 2 10 ) ( 3 + 10 ) ( 3 + 2 10 )$

202.

$( 11 + 5 ) ( 11 + 6 5 ) ( 11 + 5 ) ( 11 + 6 5 )$

203.

$( 2 7 − 5 11 ) ( 4 7 + 9 11 ) ( 2 7 − 5 11 ) ( 4 7 + 9 11 )$

204.

$( 4 6 + 7 13 ) ( 8 6 − 3 13 ) ( 4 6 + 7 13 ) ( 8 6 − 3 13 )$

205.

$(3+5)2(3+5)2$ $(2−53)2(2−53)2$

206.

$(4+11)2(4+11)2$ $(3−25)2(3−25)2$

207.

$(9−6)2(9−6)2$ $(10+37)2(10+37)2$

208.

$(5−10)2(5−10)2$ $(8+32)2(8+32)2$

209.

$( 4 + 2 ) ( 4 − 2 ) ( 4 + 2 ) ( 4 − 2 )$

210.

$( 7 + 10 ) ( 7 − 10 ) ( 7 + 10 ) ( 7 − 10 )$

211.

$( 4 + 9 3 ) ( 4 − 9 3 ) ( 4 + 9 3 ) ( 4 − 9 3 )$

212.

$( 1 + 8 2 ) ( 1 − 8 2 ) ( 1 + 8 2 ) ( 1 − 8 2 )$

213.

$( 12 − 5 5 ) ( 12 + 5 5 ) ( 12 − 5 5 ) ( 12 + 5 5 )$

214.

$( 9 − 4 3 ) ( 9 + 4 3 ) ( 9 − 4 3 ) ( 9 + 4 3 )$

215.

$( 3 x 3 + 2 ) ( 3 x 3 − 2 ) ( 3 x 3 + 2 ) ( 3 x 3 − 2 )$

216.

$( 4 x 3 + 3 ) ( 4 x 3 − 3 ) ( 4 x 3 + 3 ) ( 4 x 3 − 3 )$

Mixed Practice

217.

$2 3 27 + 3 4 48 2 3 27 + 3 4 48$

218.

$175 k 4 − 63 k 4 175 k 4 − 63 k 4$

219.

$5 6 162 + 3 16 128 5 6 162 + 3 16 128$

220.

$24 3 + / 81 3 24 3 + / 81 3$

221.

$1 2 80 4 − 2 3 405 4 1 2 80 4 − 2 3 405 4$

222.

$8 13 4 − 4 13 4 − 3 13 4 8 13 4 − 4 13 4 − 3 13 4$

223.

$5 12 c 4 − 3 27 c 6 5 12 c 4 − 3 27 c 6$

224.

$80 a 5 − 45 a 5 80 a 5 − 45 a 5$

225.

$3 5 75 − 1 4 48 3 5 75 − 1 4 48$

226.

$21 9 3 − 2 9 3 21 9 3 − 2 9 3$

227.

$8 64 q 6 3 − 3 125 q 6 3 8 64 q 6 3 − 3 125 q 6 3$

228.

$11 11 − 10 11 11 11 − 10 11$

229.

$3 · 21 3 · 21$

230.

$( 4 6 ) ( − 18 ) ( 4 6 ) ( − 18 )$

231.

$( 7 4 3 ) ( −3 18 3 ) ( 7 4 3 ) ( −3 18 3 )$

232.

$( 4 12 x 5 ) ( 2 6 x 3 ) ( 4 12 x 5 ) ( 2 6 x 3 )$

233.

$( 29 ) 2 ( 29 ) 2$

234.

$( −4 17 ) ( −3 17 ) ( −4 17 ) ( −3 17 )$

235.

$( −4 + 17 ) ( −3 + 17 ) ( −4 + 17 ) ( −3 + 17 )$

236.

$( 3 8 a 2 4 ) ( 12 a 3 4 ) ( 3 8 a 2 4 ) ( 12 a 3 4 )$

237.

$( 6 − 3 2 ) 2 ( 6 − 3 2 ) 2$

238.

$3 ( 4 − 3 3 ) 3 ( 4 − 3 3 )$

239.

$3 3 ( 2 9 3 + 18 3 ) 3 3 ( 2 9 3 + 18 3 )$

240.

$( 6 + 3 ) ( 6 + 6 3 ) ( 6 + 3 ) ( 6 + 6 3 )$

### Writing Exercises

241.

Explain the when a radical expression is in simplest form.

242.

Explain the process for determining whether two radicals are like or unlike. Make sure your answer makes sense for radicals containing both numbers and variables.

243.

Explain why $(−n)2(−n)2$ is always non-negative, for $n≥0.n≥0.$
Explain why $−(n)2−(n)2$ is always non-positive, for $n≥0.n≥0.$

244.

Use the binomial square pattern to simplify $(3+2)2.(3+2)2.$ Explain all your steps.

### Self Check

After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

On a scale of 1-10, how would you rate your mastery of this section in light of your responses on the checklist? How can you improve this?