Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Intermediate Algebra 2e

Review Exercises

Intermediate Algebra 2eReview Exercises

Review Exercises

Greatest Common Factor and Factor by Grouping

Find the Greatest Common Factor of Two or More Expressions

In the following exercises, find the greatest common factor.

337.

12 a 2 b 3 , 15 a b 2 12 a 2 b 3 , 15 a b 2

338.

12 m 2 n 3 , 42 m 5 n 3 12 m 2 n 3 , 42 m 5 n 3

339.

15 y 3 , 21 y 2 , 30 y 15 y 3 , 21 y 2 , 30 y

340.

45 x 3 y 2 , 15 x 4 y , 10 x 5 y 3 45 x 3 y 2 , 15 x 4 y , 10 x 5 y 3

Factor the Greatest Common Factor from a Polynomial

In the following exercises, factor the greatest common factor from each polynomial.

341.

35 y + 84 35 y + 84

342.

6 y 2 + 12 y 6 6 y 2 + 12 y 6

343.

18 x 3 15 x 18 x 3 15 x

344.

15 m 4 + 6 m 2 n 15 m 4 + 6 m 2 n

345.

4 x 3 12 x 2 + 16 x 4 x 3 12 x 2 + 16 x

346.

−3 x + 24 −3 x + 24

347.

−3 x 3 + 27 x 2 12 x −3 x 3 + 27 x 2 12 x

348.

3 x ( x 1 ) + 5 ( x 1 ) 3 x ( x 1 ) + 5 ( x 1 )

Factor by Grouping

In the following exercises, factor by grouping.

349.

a x a y + b x b y a x a y + b x b y

350.

x 2 y x y 2 + 2 x 2 y x 2 y x y 2 + 2 x 2 y

351.

x 2 + 7 x 3 x 21 x 2 + 7 x 3 x 21

352.

4 x 2 16 x + 3 x 12 4 x 2 16 x + 3 x 12

353.

m 3 + m 2 + m + 1 m 3 + m 2 + m + 1

354.

5 x 5 y y + x 5 x 5 y y + x

Factor Trinomials

Factor Trinomials of the Form x2+bx+cx2+bx+c

In the following exercises, factor each trinomial of the form x2+bx+c.x2+bx+c.

355.

a 2 + 14 a + 33 a 2 + 14 a + 33

356.

k 2 16 k + 60 k 2 16 k + 60

357.

m 2 + 3 m 54 m 2 + 3 m 54

358.

x 2 3 x 10 x 2 3 x 10

In the following examples, factor each trinomial of the form x2+bxy+cy2.x2+bxy+cy2.

359.

x 2 + 12 x y + 35 y 2 x 2 + 12 x y + 35 y 2

360.

r 2 + 3 r s 28 s 2 r 2 + 3 r s 28 s 2

361.

a 2 + 4 a b 21 b 2 a 2 + 4 a b 21 b 2

362.

p 2 5 p q 36 q 2 p 2 5 p q 36 q 2

363.

m 2 5 m n + 30 n 2 m 2 5 m n + 30 n 2

Factor Trinomials of the Form ax2+bx+cax2+bx+c Using Trial and Error

In the following exercises, factor completely using trial and error.

364.

x 3 + 5 x 2 24 x x 3 + 5 x 2 24 x

365.

3 y 3 21 y 2 + 30 y 3 y 3 21 y 2 + 30 y

366.

5 x 4 + 10 x 3 75 x 2 5 x 4 + 10 x 3 75 x 2

367.

5 y 2 + 14 y + 9 5 y 2 + 14 y + 9

368.

8 x 2 + 25 x + 3 8 x 2 + 25 x + 3

369.

10 y 2 53 y 11 10 y 2 53 y 11

370.

6 p 2 19 p q + 10 q 2 6 p 2 19 p q + 10 q 2

371.

−81 a 2 + 153 a + 18 −81 a 2 + 153 a + 18

Factor Trinomials of the Form ax2+bx+cax2+bx+c using the ‘ac’ Method

In the following exercises, factor.

372.

2 x 2 + 9 x + 4 2 x 2 + 9 x + 4

373.

18 a 2 9 a + 1 18 a 2 9 a + 1

374.

15 p 2 + 2 p 8 15 p 2 + 2 p 8

375.

15 x 2 + 6 x 2 15 x 2 + 6 x 2

376.

8 a 2 + 32 a + 24 8 a 2 + 32 a + 24

377.

3 x 2 + 3 x 36 3 x 2 + 3 x 36

378.

48 y 2 + 12 y 36 48 y 2 + 12 y 36

379.

18 a 2 57 a 21 18 a 2 57 a 21

380.

3 n 4 12 n 3 96 n 2 3 n 4 12 n 3 96 n 2

Factor using substitution

In the following exercises, factor using substitution.

381.

x 4 13 x 2 30 x 4 13 x 2 30

382.

( x 3 ) 2 5 ( x 3 ) 36 ( x 3 ) 2 5 ( x 3 ) 36

Factor Special Products

Factor Perfect Square Trinomials

In the following exercises, factor completely using the perfect square trinomials pattern.

383.

25 x 2 + 30 x + 9 25 x 2 + 30 x + 9

384.

36 a 2 84 a b + 49 b 2 36 a 2 84 a b + 49 b 2

385.

40 x 2 + 360 x + 810 40 x 2 + 360 x + 810

386.

5 k 3 70 k 2 + 245 k 5 k 3 70 k 2 + 245 k

387.

75 u 4 30 u 3 v + 3 u 2 v 2 75 u 4 30 u 3 v + 3 u 2 v 2

Factor Differences of Squares

In the following exercises, factor completely using the difference of squares pattern, if possible.

388.

81 r 2 25 81 r 2 25

389.

169 m 2 n 2 169 m 2 n 2

390.

25 p 2 1 25 p 2 1

391.

9 121 y 2 9 121 y 2

392.

20 x 2 125 20 x 2 125

393.

169 n 3 n 169 n 3 n

394.

6 p 2 q 2 54 p 2 6 p 2 q 2 54 p 2

395.

24 p 2 + 54 24 p 2 + 54

396.

49 x 2 81 y 2 49 x 2 81 y 2

397.

16 z 4 1 16 z 4 1

398.

48 m 4 n 2 243 n 2 48 m 4 n 2 243 n 2

399.

a 2 + 6 a + 9 9 b 2 a 2 + 6 a + 9 9 b 2

400.

x 2 16 x + 64 y 2 x 2 16 x + 64 y 2

Factor Sums and Differences of Cubes

In the following exercises, factor completely using the sums and differences of cubes pattern, if possible.

401.

a 3 125 a 3 125

402.

b 3 216 b 3 216

403.

2 m 3 + 54 2 m 3 + 54

404.

81 m 3 + 3 81 m 3 + 3

General Strategy for Factoring Polynomials

Recognize and Use the Appropriate Method to Factor a Polynomial Completely

In the following exercises, factor completely.

405.

24 x 3 + 44 x 2 24 x 3 + 44 x 2

406.

24 a 4 9 a 3 24 a 4 9 a 3

407.

16 n 2 56 m n + 49 m 2 16 n 2 56 m n + 49 m 2

408.

6 a 2 25 a 9 6 a 2 25 a 9

409.

5 u 4 45 u 2 5 u 4 45 u 2

410.

n 4 81 n 4 81

411.

64 j 2 + 225 64 j 2 + 225

412.

5 x 2 + 5 x 60 5 x 2 + 5 x 60

413.

b 3 64 b 3 64

414.

m 3 + 125 m 3 + 125

415.

2 b 2 2 b c + 5 c b 5 c 2 2 b 2 2 b c + 5 c b 5 c 2

416.

48 x 5 y 2 243 x y 2 48 x 5 y 2 243 x y 2

417.

5 q 2 15 q 90 5 q 2 15 q 90

418.

4 u 5 v + 4 u 2 v 3 4 u 5 v + 4 u 2 v 3

419.

10 m 4 6250 10 m 4 6250

420.

60 x 2 y 75 x y + 30 y 60 x 2 y 75 x y + 30 y

421.

16 x 2 24 x y + 9 y 2 64 16 x 2 24 x y + 9 y 2 64

Polynomial Equations

Use the Zero Product Property

In the following exercises, solve.

422.

( a 3 ) ( a + 7 ) = 0 ( a 3 ) ( a + 7 ) = 0

423.

( 5 b + 1 ) ( 6 b + 1 ) = 0 ( 5 b + 1 ) ( 6 b + 1 ) = 0

424.

6 m ( 12 m 5 ) = 0 6 m ( 12 m 5 ) = 0

425.

( 2 x 1 ) 2 = 0 ( 2 x 1 ) 2 = 0

426.

3 m ( 2 m 5 ) ( m + 6 ) = 0 3 m ( 2 m 5 ) ( m + 6 ) = 0

Solve Quadratic Equations by Factoring

In the following exercises, solve.

427.

x 2 + 9 x + 20 = 0 x 2 + 9 x + 20 = 0

428.

y 2 y 72 = 0 y 2 y 72 = 0

429.

2 p 2 11 p = 40 2 p 2 11 p = 40

430.

q 3 + 3 q 2 + 2 q = 0 q 3 + 3 q 2 + 2 q = 0

431.

144 m 2 25 = 0 144 m 2 25 = 0

432.

4 n 2 = 36 4 n 2 = 36

433.

( x + 6 ) ( x 3 ) = −8 ( x + 6 ) ( x 3 ) = −8

434.

( 3 x 2 ) ( x + 4 ) = 12 x ( 3 x 2 ) ( x + 4 ) = 12 x

435.

16 p 3 = 24 p 2 9 p 16 p 3 = 24 p 2 9 p

436.

2 y 3 + 2 y 2 = 12 y 2 y 3 + 2 y 2 = 12 y

Solve Equations with Polynomial Functions

In the following exercises, solve.

437.

For the function, f(x)=x2+11x+20,f(x)=x2+11x+20, find when f(x)=−8f(x)=−8 Use this information to find two points that lie on the graph of the function.

438.

For the function, f(x)=9x218x+5,f(x)=9x218x+5, find when f(x)=−3f(x)=−3 Use this information to find two points that lie on the graph of the function.

In each function, find: the zeros of the function the x-intercepts of the graph of the function the y-intercept of the graph of the function.

439.

f ( x ) = 64 x 2 49 f ( x ) = 64 x 2 49

440.

f ( x ) = 6 x 2 13 x 5 f ( x ) = 6 x 2 13 x 5

Solve Applications Modeled by Quadratic Equations

In the following exercises, solve.

441.

The product of two consecutive odd numbers is 399. Find the numbers.

442.

The area of a rectangular shaped patio 432 square feet. The length of the patio is 6 feet more than its width. Find the length and width.

443.

A ladder leans against the wall of a building. The length of the ladder is 9 feet longer than the distance of the bottom of the ladder from the building. The distance of the top of the ladder reaches up the side of the building is 7 feet longer than the distance of the bottom of the ladder from the building. Find the lengths of all three sides of the triangle formed by the ladder leaning against the building.

444.

Shruti is going to throw a ball from the top of a cliff. When she throws the ball from 80 feet above the ground, the function h(t)=−16t2+64t+80h(t)=−16t2+64t+80 models the height, h, of the ball above the ground as a function of time, t. Find: the zeros of this function which tells us when the ball will hit the ground. the time(s) the ball will be 80 feet above the ground. the height the ball will be at t=2t=2 seconds which is when the ball will be at its highest point.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/intermediate-algebra-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/intermediate-algebra-2e/pages/1-introduction
Citation information

© Jul 24, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.