Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Física universitaria volumen 3

5.6 Transformación relativista de la velocidad

Física universitaria volumen 35.6 Transformación relativista de la velocidad

Índice
  1. Prefacio
  2. Óptica
    1. 1 La naturaleza de la luz
      1. Introducción
      2. 1.1 La propagación de la luz
      3. 1.2 La ley de reflexión
      4. 1.3 Refracción
      5. 1.4 Reflexión interna total
      6. 1.5 Dispersión
      7. 1.6 Principio de Huygens
      8. 1.7 Polarización
      9. Revisión Del Capítulo
        1. Términos clave
        2. Ecuaciones clave
        3. Resumen
        4. Preguntas Conceptuales
        5. Problemas
        6. Problemas Adicionales
        7. Problemas De Desafío
    2. 2 Óptica geométrica y formación de imágenes
      1. Introducción
      2. 2.1 Imágenes formadas por espejos planos
      3. 2.2 Espejos esféricos
      4. 2.3 Imágenes formadas por refracción
      5. 2.4 Lentes delgadas
      6. 2.5 El ojo
      7. 2.6 La cámara
      8. 2.7 La lupa simple
      9. 2.8 Microscopios y telescopios
      10. Revisión Del Capítulo
        1. Términos clave
        2. Ecuaciones clave
        3. Resumen
        4. Preguntas Conceptuales
        5. Problemas
        6. Problemas Adicionales
    3. 3 Interferencias
      1. Introducción
      2. 3.1 Interferencia de doble rendija de Young
      3. 3.2 Matemáticas de la interferencia
      4. 3.3 Interferencias de rendijas múltiples
      5. 3.4 Interferencia de película delgada
      6. 3.5 El interferómetro de Michelson
      7. Revisión Del Capítulo
        1. Términos clave
        2. Ecuaciones clave
        3. Resumen
        4. Preguntas Conceptuales
        5. Problemas
        6. Problemas Adicionales
        7. Problemas De Desafío
    4. 4 Difracción
      1. Introducción
      2. 4.1 Difracción de una rendija
      3. 4.2 Intensidad en la difracción de una rendija
      4. 4.3 Difracción de doble rendija
      5. 4.4 Rejillas de difracción
      6. 4.5 Aberturas circulares y resolución
      7. 4.6 Difracción de rayos X
      8. 4.7 Holografía
      9. Revisión Del Capítulo
        1. Términos clave
        2. Ecuaciones clave
        3. Resumen
        4. Preguntas Conceptuales
        5. Problemas
        6. Problemas Adicionales
        7. Problemas De Desafío
  3. Física moderna
    1. 5 Relatividad
      1. Introducción
      2. 5.1 Invariancia de las leyes físicas
      3. 5.2 Relatividad de la simultaneidad
      4. 5.3 Dilatación del tiempo
      5. 5.4 Contracción de longitud
      6. 5.5 La transformación de Lorentz
      7. 5.6 Transformación relativista de la velocidad
      8. 5.7 Efecto Doppler para la luz
      9. 5.8 Momento relativista
      10. 5.9 Energía relativista
      11. Revisión Del Capítulo
        1. Términos clave
        2. Ecuaciones clave
        3. Resumen
        4. Preguntas Conceptuales
        5. Problemas
        6. Problemas Adicionales
    2. 6 Fotones y ondas de materia
      1. Introducción
      2. 6.1 Radiación de cuerpo negro
      3. 6.2 Efecto fotoeléctrico
      4. 6.3 El efecto Compton
      5. 6.4 Modelo de Bohr del átomo de hidrógeno
      6. 6.5 Las ondas de materia de De Broglie
      7. 6.6 Dualidad onda-partícula
      8. Revisión Del Capítulo
        1. Términos clave
        2. Ecuaciones clave
        3. Resumen
        4. Preguntas Conceptuales
        5. Problemas
        6. Problemas Adicionales
    3. 7 Mecánica cuántica
      1. Introducción
      2. 7.1 Funciones de onda
      3. 7.2 El principio de incertidumbre de Heisenberg
      4. 7.3 La ecuación de Schrӧdinger
      5. 7.4 La partícula cuántica en una caja
      6. 7.5 El oscilador armónico cuántico
      7. 7.6 El efecto túnel de las partículas a través de las barreras de potencial
      8. Revisión Del Capítulo
        1. Términos clave
        2. Ecuaciones clave
        3. Resumen
        4. Preguntas Conceptuales
        5. Problemas
        6. Problemas Adicionales
        7. Problemas De Desafío
    4. 8 Estructura atómica
      1. Introducción
      2. 8.1 El átomo de hidrógeno
      3. 8.2 Momento dipolar magnético orbital del electrón
      4. 8.3 Espín del electrón
      5. 8.4 El principio de exclusión y la tabla periódica
      6. 8.5 Espectros atómicos y rayos X
      7. 8.6 Láseres
      8. Revisión Del Capítulo
        1. Términos clave
        2. Ecuaciones clave
        3. Resumen
        4. Preguntas Conceptuales
        5. Problemas
        6. Problemas Adicionales
    5. 9 Física de la materia condensada
      1. Introducción
      2. 9.1 Tipos de enlaces moleculares
      3. 9.2 Espectros moleculares
      4. 9.3 Enlaces en los sólidos cristalinos
      5. 9.4 Modelo de electrones libres de los metales
      6. 9.5 Teoría de bandas de los sólidos
      7. 9.6 Semiconductores y dopaje
      8. 9.7 Dispositivos semiconductores
      9. 9.8 Superconductividad
      10. Revisión Del Capítulo
        1. Términos clave
        2. Ecuaciones clave
        3. Resumen
        4. Preguntas Conceptuales
        5. Problemas
        6. Problemas Adicionales
        7. Problemas De Desafío
    6. 10 Física nuclear
      1. Introducción
      2. 10.1 Propiedades de los núcleos
      3. 10.2 Energía de enlace nuclear
      4. 10.3 Decaimiento radioactivo
      5. 10.4 Reacciones nucleares
      6. 10.5 Fisión
      7. 10.6 Fusión nuclear
      8. 10.7 Usos médicos y efectos biológicos de la radiación nuclear
      9. Revisión Del Capítulo
        1. Términos clave
        2. Ecuaciones clave
        3. Resumen
        4. Preguntas Conceptuales
        5. Problemas
        6. Problemas Adicionales
        7. Problemas De Desafío
    7. 11 Física de partículas y cosmología
      1. Introducción
      2. 11.1 Introducción a la física de partículas
      3. 11.2 Leyes de conservación de las partículas
      4. 11.3 Cuarks
      5. 11.4 Aceleradores y detectores de partículas
      6. 11.5 El modelo estándar
      7. 11.6 El Big Bang
      8. 11.7 Evolución del universo primigenio
      9. Revisión Del Capítulo
        1. Términos clave
        2. Ecuaciones clave
        3. Resumen
        4. Preguntas Conceptuales
        5. Problemas
        6. Problemas Adicionales
        7. Problemas De Desafío
  4. A Unidades
  5. B Factores de conversión
  6. C Constantes fundamentales
  7. D Datos astronómicos
  8. E Fórmulas matemáticas
  9. F Química
  10. G El alfabeto griego
  11. Clave de respuestas
    1. Capítulo 1
    2. Capítulo 2
    3. Capítulo 3
    4. Capítulo 4
    5. Capítulo 5
    6. Capítulo 6
    7. Capítulo 7
    8. Capítulo 8
    9. Capítulo 9
    10. Capítulo 10
    11. Capítulo 11
  12. Índice

Objetivos de aprendizaje

Al final de esta sección, podrá:

  • Derivar las ecuaciones consistentes con la relatividad especial para transformar las velocidades en un marco de referencia inercial a otro.
  • Aplicar las ecuaciones de transformación de la velocidad a los objetos que se mueven a velocidades relativistas.
  • Examinar cómo las velocidades combinadas predichas por las ecuaciones de transformación relativista se comparan con las esperadas de manera clásica.

Mantenerse en su sitio dentro de un kayak en un río rápido requiere un esfuerzo. La corriente del río arrastra el kayak. Tratar de remar contra la corriente puede hacer que el kayak se mueva río arriba en relación con el agua, pero eso solo explica parte de su velocidad en relación con la orilla. El movimiento del kayak es un ejemplo de cómo las velocidades en la mecánica de Newton se combinan por suma de vectores. La velocidad del kayak es la suma vectorial de su velocidad con respecto al agua y la velocidad del agua con respecto a la orilla. Sin embargo, la suma relativista de velocidades es muy diferente.

Transformaciones de velocidad

Imagine un auto viajando de noche por una carretera recta, como en la Figura 5.19. El conductor ve la luz que sale de los faros a una velocidad c dentro del marco de referencia del auto. Si la transformación galileana se aplicara a la luz, entonces la luz de los faros del auto se acercaría al peatón a una velocidad u=v+c,u=v+c, lo contrario a los postulados de Einstein.

Una ilustración de un auto que se mueve con una velocidad v, con la luz que sale de los faros a una velocidad mayor c.
Figura 5.19 Según los resultados experimentales y el segundo postulado de la relatividad, la luz de los faros del auto se aleja de este a una velocidad c y se acerca al observador en la acera a una velocidad c.

Tanto la distancia recorrida como el tiempo de viaje son diferentes en los dos marcos de referencia, y deben diferir de forma que la velocidad de la luz sea la misma en todos los marcos inerciales. Las reglas correctas para transformar las velocidades de un marco a otro pueden obtenerse a partir de las ecuaciones de transformación de Lorentz.

Transformación relativista de la velocidad

Supongamos que un objeto P se mueve a velocidad constante u=(ux,uy,uz)u=(ux,uy,uz) medida en el marco SS . El marco SS se mueve a lo largo de su eje de la x x a una velocidad v. En un incremento de tiempo dtdt, la partícula es desplazada por dxdx a lo largo del eje de la x.x. Aplicando las ecuaciones de transformación de Lorentz se obtienen los correspondientes incrementos de tiempo y desplazamiento en los ejes no primos:

dt=γ(dt+vdx/c2)dx=γ(dx+vdt)dy=dydz=dz.dt=γ(dt+vdx/c2)dx=γ(dx+vdt)dy=dydz=dz.

Los componentes de la velocidad de la partícula vista en el sistema no primo de coordenadas son entonces

dxdt=γ(dx+vdt)γ(dt+vdx/c2)=dxdt+v1+vc2dxdtdydt=dyγ(dt+vdx/c2)=dydtγ(1+vc2dxdt)dzdt=dzγ(dt+vdx/c2)=dzdtγ(1+vc2dxdt).dxdt=γ(dx+vdt)γ(dt+vdx/c2)=dxdt+v1+vc2dxdtdydt=dyγ(dt+vdx/c2)=dydtγ(1+vc2dxdt)dzdt=dzγ(dt+vdx/c2)=dzdtγ(1+vc2dxdt).

Obtenemos así las ecuaciones de los componentes de la velocidad del objeto según lo visto en el marco S:

ux=(ux+v1+vux/c2),uy=(uy/γ1+vux/c2),uz=(uz/γ1+vux/c2).ux=(ux+v1+vux/c2),uy=(uy/γ1+vux/c2),uz=(uz/γ1+vux/c2).

Compare esto con la forma en que la transformación galileana de la mecánica clásica dice que las velocidades se transforman, sumando simplemente como vectores:

ux=ux+u,uy=uy,uz=uz.ux=ux+u,uy=uy,uz=uz.

Cuando la velocidad relativa de los marcos es mucho menor que la velocidad de la luz, es decir, cuando vc,vc, la ley de adición de velocidades de la relatividad especial se reduce a la ley de velocidad galileana. Cuando la velocidad v de SS respecto a S es comparable a la velocidad de la luz, la ley de suma de velocidades relativistas da un resultado mucho menor que el de la suma de la velocidad clásica (galileana).

Ejemplo 5.9

Ecuaciones de transformación de la velocidad para la luz

Supongamos que una nave espacial que se dirige directamente a la Tierra a la mitad de la velocidad de la luz nos envía una señal en un haz de luz producido por un láser (Figura 5.20). Dado que la luz sale de la nave con una velocidad c observada desde la nave, calcule la velocidad con la que se acerca a la Tierra.
Ilustración de una nave espacial que se desplaza hacia la derecha con velocidad v=0,500c y que emite un rayo láser horizontal que se propaga hacia la derecha con velocidad c.
Figura 5.20 ¿A qué velocidad se acerca una señal luminosa a la Tierra si se envía desde una nave espacial que viaja a 0,500c?

Estrategia

Como la luz y la nave espacial se mueven a velocidades relativistas, no podemos utilizar la simple adición de velocidades. En su lugar, determinamos la velocidad a la que la luz se acerca a la Tierra utilizando la adición de la velocidad relativista.

Solución

  1. Identifique los aspectos conocidos: v=0,500c;u=c.v=0,500c;u=c.
  2. Identifique la incógnita: u.
  3. Exprese la respuesta en forma de una ecuación: u=v+u1+vuc2.u=v+u1+vuc2.
  4. Haga el cálculo:
    u=v+u1+vuc2=0,500c+c1+(0,500c)(c)c2=(0,500+1)c(c2+0,500c2c2)=c.u=v+u1+vuc2=0,500c+c1+(0,500c)(c)c2=(0,500+1)c(c2+0,500c2c2)=c.

Importancia

La suma de velocidades relativistas da el resultado correcto. La luz sale de la nave a velocidad c y se acerca a la Tierra a velocidad c. La velocidad de la luz es independiente del movimiento relativo de la fuente y el observador, tanto si el observador está en la nave como si está en tierra.

Las velocidades no pueden sumar más que la velocidad de la luz, siempre que v sea menor que c y uu no supere a c. El siguiente ejemplo ilustra que la adición de la velocidad relativista no es tan simétrica como la suma de velocidades relativistas.

Ejemplo 5.10

Envío de paquete relativista

Supongamos que la nave espacial del ejemplo anterior se acerca a la Tierra a la mitad de la velocidad de la luz y dispara un bote a una velocidad de 0,750c (Figura 5.21). (a) ¿A qué velocidad ve un observador terrestre el bote si se dispara directamente hacia la Tierra? (b) ¿Si se dispara directamente en dirección contraria a la Tierra?
La primera ilustración muestra la nave espacial moviéndose hacia la derecha, hacia la tierra, con una velocidad v=0,500c, y un bote moviéndose hacia la derecha con una velocidad u prima = 0,750c. La segunda ilustración muestra la nave espacial moviéndose hacia la derecha, hacia la tierra, con una velocidad v=0,500c, y un bote moviéndose hacia la izquierda con una velocidad u prima = -0,750c.
Figura 5.21 Se dispara un bote a 0,7500c hacia la Tierra o alejándose de ella.

Estrategia

Dado que el bote y la nave espacial se mueven a velocidades relativistas, debemos determinar la velocidad del bote según un observador terrestre utilizando la suma de velocidades relativistas en lugar de la simple suma de velocidades.

Solución para (a)

  1. Identifique los aspectos conocidos: v=0,500c;u=0,750c.v=0,500c;u=0,750c.
  2. Identifique la incógnita: u.
  3. Exprese la respuesta en forma de una ecuación: u=v+u1+vuc2.u=v+u1+vuc2.
  4. Haga el cálculo:
    u=v+u1+vuc2=0,500c+0,750c1+(0,500c)(0,750c)c2=0,909c.u=v+u1+vuc2=0,500c+0,750c1+(0,500c)(0,750c)c2=0,909c.

Solución para (b)

  1. Identifique los aspectos conocidos: v=0,500c;u=−0,750c.v=0,500c;u=−0,750c.
  2. Identifique la incógnita: u.
  3. Exprese la respuesta en forma de una ecuación: u=v+u1+vuc2.u=v+u1+vuc2.
  4. Haga el cálculo:
    u=v+u1+vuc2=0,500c+(−0,750c)1+(0,500c)(−0,750c)c2=−0,400c.u=v+u1+vuc2=0,500c+(−0,750c)1+(0,500c)(−0,750c)c2=−0,400c.

Importancia

El signo menos indica una velocidad de alejamiento de la Tierra (en la dirección opuesta a v), lo que significa que el bote se dirige hacia la Tierra en la parte (a) y se aleja en la parte (b), como era de esperar. Pero las velocidades relativistas no se suman tan sencillamente como lo hacen de la forma clásica. En la parte (a), el bote sí se acerca más rápido a la Tierra, pero a una velocidad inferior a la suma vectorial de las velocidades, que daría 1,250c. En la parte (b), el bote se aleja de la Tierra a una velocidad de −0,400c,−0,400c, que es más rápido que -0,250c esperado clásicamente. Las diferencias de velocidad ni siquiera son simétricas: En la parte (a), un observador en la Tierra ve que el bote y la nave se separan a una velocidad de 0,409c, y a una velocidad de 0,900c en la parte (b).

Compruebe Lo Aprendido 5.6

Las distancias a lo largo de una dirección perpendicular al movimiento relativo de los dos fotogramas son las mismas en ambos fotogramas. ¿Por qué entonces las velocidades perpendiculares a la dirección de la x son diferentes en los dos fotogramas?

Solicitar una copia impresa

As an Amazon Associate we earn from qualifying purchases.

Cita/Atribución

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/f%C3%ADsica-universitaria-volumen-3/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/f%C3%ADsica-universitaria-volumen-3/pages/1-introduccion
Información sobre citas

© 13 abr. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.