Objetivos de aprendizaje
Al final de esta sección, podrá:
- Describir cómo la magnitud de un torque depende de la magnitud del brazo de palanca y del ángulo que forma el vector de fuerza con el brazo de palanca.
- Determinar el signo (positivo o negativo) de un torque con la regla de la mano derecha.
- Calcular cada uno de los torques en torno a un eje común y sumarlos para hallar el torque neto.
Una magnitud importante para describir la dinámica de un cuerpo rígido en rotación es el torque. Vemos la aplicación del torque de muchas maneras en nuestro mundo. Todos tenemos una intuición sobre el torque, como cuando utilizamos una llave grande para desenroscar un tornillo difícil. El torque actúa de forma invisible, como cuando pisamos el acelerador en un auto, lo que hace que el motor ponga torque adicional en el tren de transmisión. También, cada vez que movemos nuestro cuerpo desde una posición de pie, aplicamos un torque a nuestras extremidades. En esta sección, definimos el torque y argumentamos la ecuación para calcular el torque para un cuerpo rígido con rotación de eje fijo.
Definir el torque
Hasta ahora hemos definido muchas variables que son equivalentes rotacionales a sus contrapartes traslacionales. Consideremos cuál debe ser la contrapartida de la fuerza. Dado que las fuerzas cambian el movimiento de traslación de los objetos, la contraparte rotacional deberá relacionarse con el cambio del movimiento de rotación de un objeto alrededor de un eje. Llamamos torque a esta contrapartida rotacional.
En la vida cotidiana, rotamos objetos alrededor de un eje todo el tiempo, así que intuitivamente ya sabemos mucho sobre el torque. Piense, por ejemplo, en cómo rotamos una puerta para abrirla. En primer lugar, sabemos que una puerta se abre con lentitud si empujamos demasiado cerca de sus bisagras; es más eficaz hacer rotar una puerta abierta si empujamos lejos de las bisagras. En segundo lugar, sabemos que debemos empujar perpendicularmente al plano de la puerta; si empujamos paralelamente al plano de la puerta, no podremos hacerla rotar. En tercer lugar, cuanto mayor sea la fuerza, más eficaz será para abrir la puerta; cuanto más fuerte sea el empujón, la puerta se abrirá más rápidamente. El primer punto implica que, cuanto más lejos se aplique la fuerza del eje de rotación, mayor será la aceleración angular; el segundo implica que la eficacia depende del ángulo en el que se aplica la fuerza; el tercero implica que la magnitud de la fuerza también debe formar parte de la ecuación. Observe que, para la rotación en un plano, el torque tiene dos direcciones posibles. El torque es en el sentido de las agujas del reloj o en el sentido contrario de las agujas del reloj con respecto al punto de apoyo elegido. La Figura 10.31 muestra rotaciones en sentido contrario de las agujas del reloj.
Consideremos ahora cómo definir los torques en el caso general de las tres dimensiones.
Torque
Cuando una fuerza se aplica a un punto P cuya posición es respecto a O (Figura 10.32), el torque alrededor de O es
A partir de la definición del producto cruz, el torque es perpendicular al plano que contiene a y tiene una magnitud
donde es el ángulo entre los vectores y . La unidad SI de torque es newtons por metros, que se escribe como . La cantidad es la distancia perpendicular de O a la línea determinada por el vector y se denomina brazo de palanca. Observe que, cuanto mayor sea el brazo de palanca, mayor será la magnitud del torque. En términos del brazo de palanca, la magnitud del torque es
El producto cruz también nos indica el signo del torque. En la Figura 10.32, el producto cruz es a lo largo del eje de la z positiva, que, por convención, es un torque positivo. Si es a lo largo del eje de la z negativa; esto produce un torque negativo.
Si consideramos un disco que rota libremente en torno a un eje que pasa por el centro, como se muestra en la Figura 10.33, podemos ver cómo el ángulo entre el radio y la fuerza afecta a la magnitud del torque. Si el ángulo es cero, el torque es cero; si el ángulo es , el torque es máximo. El torque en la Figura 10.33 es positivo porque la dirección del torque por la regla de la mano derecha está fuera de la página a lo largo del eje de la z positiva. El disco rota en el sentido contrario de las agujas del reloj debido al torque, en la misma dirección que la aceleración angular positiva.
Se puede calcular cualquier número de torques en torno a un eje determinado. Cada uno de los torques se suman para producir un torque neto en torno al eje. Cuando se asigna el signo apropiado (positivo o negativo) a la magnitud de cada uno de los torques en torno a un eje determinado, el torque neto al eje es la suma de todos y cada uno de los torques:
Calcular el torque neto para cuerpos rígidos en un eje fijo
En los siguientes ejemplos, calculamos el torque tanto de forma abstracta y aplicado a un cuerpo rígido.
En primer lugar, introducimos una estrategia de resolución de problemas.
Estrategia de Resolución De Problemas
Hallar el torque neto
- Elija un sistema de coordenadas con el punto de apoyo o eje de rotación como origen del sistema seleccionado de coordenadas.
- Determine el ángulo entre el brazo de palanca y el vector de fuerza.
- Tome el producto cruz de para determinar si el torque es positivo o negativo en torno al punto de apoyo o eje.
- Evalúe la magnitud del torque por medio de .
- Asigne el signo apropiado, positivo o negativo, a la magnitud.
- Sume los torques para hallar el torque neto.
Ejemplo 10.14
Calcular el torque
En la Figura 10.34 se muestran cuatro fuerzas en lugares y orientaciones particulares con respecto a un sistema de coordenadas xy determinado. Halle el torque debido a cada fuerza en torno al origen, y luego utilice sus resultados para hallar el torque neto en torno al origen.Estrategia
Este problema requiere el cálculo del torque. Todas las cantidades conocidas, fuerzas con direcciones y brazos de palanca, se indican en la figura. El objetivo es hallar cada torque y el torque neto al sumar todos y cada uno de los torques. Tenga cuidado de asignar el signo correcto a cada torque mediante el producto cruz de y el vector de fuerza .Solución
Utilice para hallar la magnitud y para determinar el signo del torque.El torque para la fuerza de 40 N en el primer cuadrante viene dado por .
El producto cruz de y está fuera de la página, es positivo.
El torque para la fuerza de 20 N en el tercer cuadrante viene dado por.
El producto cruz de y está dentro de la página, por lo que es negativo.
El torque para la fuerza 30 N en el tercer cuadrante viene dado por .
El producto cruz de y está fuera de la página, es positivo.
El torque para la fuerza de 20 N en el segundo cuadrante viene dado por .
El producto cruz de y está fuera de la página.
Por lo tanto, el torque neto es
Importancia
Observe que cada fuerza que actúa en el sentido contrario de las agujas del reloj tiene un torque positivo, mientras que cada fuerza que actúa en el sentido de las agujas del reloj tiene un torque negativo. El torque es mayor cuando la distancia, la fuerza o los componentes perpendiculares son mayores.Ejemplo 10.15
Calcular el torque en un cuerpo rígido
La Figura 10.35 muestra varias fuerzas que actúan en diferentes lugares y ángulos sobre un volante de inercia. Tenemos , , y . Calcule el torque neto en el volante de inercia en torno a un eje que pasa por el centro.Estrategia
Calculamos cada torque individualmente, mediante el producto cruz, y determinamos el signo del torque. Luego sumamos los torques para dar con el torque neto.Solución
Comenzamos con . Si nos fijamos en la Figura 10.35, vemos que forma un ángulo de con el radio del vector . Tomando el producto cruz, vemos que está fuera de la página y por lo tanto es positivo. También vemos esto al calcular su magnitud:A continuación, examinamos . El ángulo entre y es y el producto cruz está en la página, por lo que el torque es negativo. Su valor es
Cuando evaluamos el torque debido a , vemos que el ángulo que forma con es cero, por lo que Por lo tanto, no produce ningún torque en el volante de inercia.
Evaluamos la suma de los torques:
Importancia
El eje de rotación está en el centro de masa del volante de inercia. Dado que el volante de inercia está en un eje fijo, no se traslada libremente. Si estuviera en una superficie sin fricción y no estuviera fijo, provocaría la traslación del volante de inercia, así como . Su movimiento sería una combinación de traslación y rotación.Compruebe Lo Aprendido 10.6
Un gran barco oceánico encalla cerca de la costa, como ocurrió con el Costa Concordia, y queda en un ángulo como el que se muestra a continuación. La tripulación de salvamento deberá aplicar un torque para enderezar el barco con el fin de hacerlo flotar para su transporte. Una fuerza de actuando en el punto A deberá aplicarse para enderezar el barco. ¿Cuál es el torque sobre el punto de contacto del barco con el suelo (Figura 10.36)?