Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Table of contents
  1. Preface
  2. 1 Sets
    1. Introduction
    2. 1.1 Basic Set Concepts
    3. 1.2 Subsets
    4. 1.3 Understanding Venn Diagrams
    5. 1.4 Set Operations with Two Sets
    6. 1.5 Set Operations with Three Sets
    7. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  3. 2 Logic
    1. Introduction
    2. 2.1 Statements and Quantifiers
    3. 2.2 Compound Statements
    4. 2.3 Constructing Truth Tables
    5. 2.4 Truth Tables for the Conditional and Biconditional
    6. 2.5 Equivalent Statements
    7. 2.6 De Morgan’s Laws
    8. 2.7 Logical Arguments
    9. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Projects
      5. Chapter Review
      6. Chapter Test
  4. 3 Real Number Systems and Number Theory
    1. Introduction
    2. 3.1 Prime and Composite Numbers
    3. 3.2 The Integers
    4. 3.3 Order of Operations
    5. 3.4 Rational Numbers
    6. 3.5 Irrational Numbers
    7. 3.6 Real Numbers
    8. 3.7 Clock Arithmetic
    9. 3.8 Exponents
    10. 3.9 Scientific Notation
    11. 3.10 Arithmetic Sequences
    12. 3.11 Geometric Sequences
    13. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  5. 4 Number Representation and Calculation
    1. Introduction
    2. 4.1 Hindu-Arabic Positional System
    3. 4.2 Early Numeration Systems
    4. 4.3 Converting with Base Systems
    5. 4.4 Addition and Subtraction in Base Systems
    6. 4.5 Multiplication and Division in Base Systems
    7. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Projects
      5. Chapter Review
      6. Chapter Test
  6. 5 Algebra
    1. Introduction
    2. 5.1 Algebraic Expressions
    3. 5.2 Linear Equations in One Variable with Applications
    4. 5.3 Linear Inequalities in One Variable with Applications
    5. 5.4 Ratios and Proportions
    6. 5.5 Graphing Linear Equations and Inequalities
    7. 5.6 Quadratic Equations with Two Variables with Applications
    8. 5.7 Functions
    9. 5.8 Graphing Functions
    10. 5.9 Systems of Linear Equations in Two Variables
    11. 5.10 Systems of Linear Inequalities in Two Variables
    12. 5.11 Linear Programming
    13. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  7. 6 Money Management
    1. Introduction
    2. 6.1 Understanding Percent
    3. 6.2 Discounts, Markups, and Sales Tax
    4. 6.3 Simple Interest
    5. 6.4 Compound Interest
    6. 6.5 Making a Personal Budget
    7. 6.6 Methods of Savings
    8. 6.7 Investments
    9. 6.8 The Basics of Loans
    10. 6.9 Understanding Student Loans
    11. 6.10 Credit Cards
    12. 6.11 Buying or Leasing a Car
    13. 6.12 Renting and Homeownership
    14. 6.13 Income Tax
    15. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  8. 7 Probability
    1. Introduction
    2. 7.1 The Multiplication Rule for Counting
    3. 7.2 Permutations
    4. 7.3 Combinations
    5. 7.4 Tree Diagrams, Tables, and Outcomes
    6. 7.5 Basic Concepts of Probability
    7. 7.6 Probability with Permutations and Combinations
    8. 7.7 What Are the Odds?
    9. 7.8 The Addition Rule for Probability
    10. 7.9 Conditional Probability and the Multiplication Rule
    11. 7.10 The Binomial Distribution
    12. 7.11 Expected Value
    13. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Formula Review
      4. Projects
      5. Chapter Review
      6. Chapter Test
  9. 8 Statistics
    1. Introduction
    2. 8.1 Gathering and Organizing Data
    3. 8.2 Visualizing Data
    4. 8.3 Mean, Median and Mode
    5. 8.4 Range and Standard Deviation
    6. 8.5 Percentiles
    7. 8.6 The Normal Distribution
    8. 8.7 Applications of the Normal Distribution
    9. 8.8 Scatter Plots, Correlation, and Regression Lines
    10. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  10. 9 Metric Measurement
    1. Introduction
    2. 9.1 The Metric System
    3. 9.2 Measuring Area
    4. 9.3 Measuring Volume
    5. 9.4 Measuring Weight
    6. 9.5 Measuring Temperature
    7. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  11. 10 Geometry
    1. Introduction
    2. 10.1 Points, Lines, and Planes
    3. 10.2 Angles
    4. 10.3 Triangles
    5. 10.4 Polygons, Perimeter, and Circumference
    6. 10.5 Tessellations
    7. 10.6 Area
    8. 10.7 Volume and Surface Area
    9. 10.8 Right Triangle Trigonometry
    10. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  12. 11 Voting and Apportionment
    1. Introduction
    2. 11.1 Voting Methods
    3. 11.2 Fairness in Voting Methods
    4. 11.3 Standard Divisors, Standard Quotas, and the Apportionment Problem
    5. 11.4 Apportionment Methods
    6. 11.5 Fairness in Apportionment Methods
    7. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  13. 12 Graph Theory
    1. Introduction
    2. 12.1 Graph Basics
    3. 12.2 Graph Structures
    4. 12.3 Comparing Graphs
    5. 12.4 Navigating Graphs
    6. 12.5 Euler Circuits
    7. 12.6 Euler Trails
    8. 12.7 Hamilton Cycles
    9. 12.8 Hamilton Paths
    10. 12.9 Traveling Salesperson Problem
    11. 12.10 Trees
    12. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Videos
      4. Formula Review
      5. Projects
      6. Chapter Review
      7. Chapter Test
  14. 13 Math and...
    1. Introduction
    2. 13.1 Math and Art
    3. 13.2 Math and the Environment
    4. 13.3 Math and Medicine
    5. 13.4 Math and Music
    6. 13.5 Math and Sports
    7. Chapter Summary
      1. Key Terms
      2. Key Concepts
      3. Formula Review
      4. Projects
      5. Chapter Review
      6. Chapter Test
  15. A | Co-Req Appendix: Integer Powers of 10
  16. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
  17. Index

Key Concepts

8.1 Gathering and Organizing Data

  • Categorical data places units into groups (categories), while quantitative data is a numerical measure of a property of a unit.
  • The sampling method for a study depends on the way that randomization is used to select units for the sample.
  • Frequency distributions help to summarize data by counting the number of units that fall into a particular category or range of quantitative values.

8.2 Visualizing Data

  • Categorical data can be visualized using pie charts or bar charts; quantitative data can be visualized using stem-and-leaf plots or histograms.
  • Areas in pie charts and bar charts represent proportions of the data falling into a particular category, while areas in histograms represent proportions of the data that fall into a given range of data values (or “bins”). Stem-and-leaf plots are visual representations of entire datasets.
  • By manipulating the axes, changing widths of bars, or making bad choices for bins, we can create data visualizations that misrepresent the distribution of data.

8.3 Mean, Median and Mode

  • The mode of a dataset is the value that appears the most frequently. The median is a value that is greater than or equal to no more than 50% of the data and less than or equal to no more than 50% of the data. The mean is the sum of all the data values, divided by the number of units in the dataset.
  • The median of a dataset is not affected by outliers, but the mean will be biased toward outliers. This distinction might affect which measure of centrality is used to summarize a dataset.

8.4 Range and Standard Deviation

  • The range of a dataset is the difference between its largest and smallest values. The standard deviation is approximately the mean difference (in absolute value) that individual units fall from the mean of the dataset.

8.5 Percentiles

  • The percentile rank of a data value is the percentage of all values in the dataset that are less than or equal to the given value.

8.6 The Normal Distribution

  • Normally distributed data follow a bell-shaped, symmetrical distribution.
  • The mean of normally distributed data falls at the peak of the distribution. The standard deviation of normally-distributed data is the distance from the peak to either of the inflection points.
  • Data that are normally distributed follow the 68-95-99.7 Rule, which says that approximately 68% of the data fall within one standard deviation of the mean, 95% fall within two standard deviations, and 99.7% fall within three standard deviations.
  • The zz-score for a data value is the number of standard deviations that value falls above (or below, if the zz-score is negative) the mean.
  • We can use the normal distribution to estimate percentiles.

8.7 Applications of the Normal Distribution

  • We can use zz-scores to compare data values from different datasets.

8.8 Scatter Plots, Correlation, and Regression Lines

  • If one variable affects the value of another variable, we say the first is an explanatory variable and the second is a response variable.
  • Scatter plots place a point in the xyxy-plane for each unit in the dataset. The xx-value is the value of the explanatory variable, and the yy-value is the value of the response variable.
  • The correlation coefficient rr gives us information about the strength and direction of the relationship between two variables. If rr is positive, the relationship is positive: an increase in the value of the explanatory variable tends to correspond to an increase in the value of the response variable. If rr is negative, the relationship is negative: an increase in the value of the explanatory variable tends to correspond to a decrease in the value of the response variable. Values of rr that are close to 0 indicate weak relationships, while values close to –1 or indicate strong relationships.
  • The regression line for a relationship between two variables is the line that best represents the data. It can be used to predict values of the response variable for a given value of the explanatory variable.
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/contemporary-mathematics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/contemporary-mathematics/pages/1-introduction
Citation information

© Apr 17, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.