Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
College Physics for AP® Courses

Chapter 21

College Physics for AP® CoursesChapter 21

Problems & Exercises

1.

(a) 2.75 kΩ2.75 kΩ size 12{2 "." "75"" k" %OMEGA } {}

(b) 27.5Ω27.5Ω size 12{"27" "." 5 %OMEGA } {}

3.

(a) 786Ω786Ω size 12{"786" %OMEGA } {}

(b) 20.3Ω20.3Ω size 12{"20" "." 3 %OMEGA } {}

5.

29 . 6 W 29 . 6 W size 12{"29" "." 6" W"} {}

7.

(a) 0.74 A

(b) 0.742 A

9.

(a) 60.8 W

(b) 3.18 kW

11.

(a) Rs=R1+R2RsR1R1>>R2Rs=R1+R2RsR1R1>>R2alignl { stack { size 12{R rSub { size 8{s} } =R rSub { size 8{1} } +R rSub { size 8{2} } } {} # drarrow R rSub { size 8{s} } »R rSub { size 8{1} } left (R rSub { size 8{1} } ">>"R rSub { size 8{2} } right ) {} } } {}

(b) 1Rp=1R1+1R2=R1+R2R1R21Rp=1R1+1R2=R1+R2R1R2 size 12{ { {1} over {R rSub { size 8{p} } } } = { {1} over {R rSub { size 8{1} } } } + { {1} over {R rSub { size 8{2} } } } = { {R rSub { size 8{1} } +R rSub { size 8{2} } } over {R rSub { size 8{1} } R rSub { size 8{2} } } } } {},

so that

R p = R 1 R 2 R 1 + R 2 R 1 R 2 R 1 = R 2 R 1 >> R 2 . R p = R 1 R 2 R 1 + R 2 R 1 R 2 R 1 = R 2 R 1 >> R 2 . alignl { stack { size 12{R rSub { size 8{p} } = { {R rSub { size 8{1} } R rSub { size 8{2} } } over {R rSub { size 8{1} } +R rSub { size 8{2} } } } » { {R rSub { size 8{1} } R rSub { size 8{2} } } over {R rSub { size 8{1} } } } } {} # =R rSub { size 8{2} } left (R rSub { size 8{1} } ">>"R rSub { size 8{2} } right ) "." {} } } {}

13.

(a) -400 kΩ-400 kΩ size 12{ +- "400 k" %OMEGA } {}

(b) Resistance cannot be negative.

(c) Series resistance is said to be less than one of the resistors, but it must be greater than any of the resistors.

14.

2.00 V

16.

2.9994 V

18.

0 . 375 Ω 0 . 375 Ω size 12{0 "." "375" %OMEGA } {}

21.

(a) 0.658 A

(b) 0.997 W

(c) 0.997 W; yes

23.

(a) 200 A

(b) 10.0 V

(c) 2.00 kW

(d) 0.1000Ω; 80.0 A, 4.0 V, 320 W0.1000Ω; 80.0 A, 4.0 V, 320 W size 12{0 "." "1000" %OMEGA ;" 80" "." "0 A, 4" "." "0 V, 320 W"} {}

25.

(a) 0.400 Ω0.400 Ω size 12{0 "." "400" %OMEGA } {}

(b) No, there is only one independent equation, so only rr size 12{r} {} can be found.

29.

(a) –0.120 V

(b) -1.41×102Ω-1.41×102Ω size 12{ +- 1 "." "41"´"10" rSup { size 8{-2} } %OMEGA } {}

(c) Negative terminal voltage; negative load resistance.

(d) The assumption that such a cell could provide 8.50 A is inconsistent with its internal resistance.

31.

I 2 R 2 + emf 1 I 2 r 1 + I 3 R 3 + I 3 r 2 - emf 2 = 0 I 2 R 2 + emf 1 I 2 r 1 + I 3 R 3 + I 3 r 2 - emf 2 = 0 size 12{ {underline {-I rSub { size 8{2} } R rSub { size 8{3} } + "emf" rSub { size 8{1} } - ital " I" rSub { size 8{2} } r rSub { size 8{1} } + ital " I" rSub { size 8{3} } r rSub { size 8{3} } + ital " I" rSub { size 8{3} } r rSub { size 8{2} } +- "emf" rSub { size 8{2} } =" 0"}} } {}

35.

I 3 = I 1 + I 2 I 3 = I 1 + I 2 size 12{I rSub { size 8{3} } = ital " I" rSub { size 8{1} } + ital " I" rSub { size 8{2} } } {}

37.

emf 2 - I 2 r 2 - I 2 R 2 + I 1 R 5 + I 1 r 1 - emf 1 + I 1 R 1 = 0 emf 2 - I 2 r 2 - I 2 R 2 + I 1 R 5 + I 1 r 1 - emf 1 + I 1 R 1 = 0 size 12{ {underline { "emf" rSub { size 8{2} } +- ital " I" rSub { size 8{2} } r rSub { size 8{2} } +- ital " I" rSub { size 8{2} } R rSub { size 8{2} } + ital " I" rSub { size 8{1} } R rSub { size 8{5} } +I rSub { size 8{1} } r rSub { size 8{1} } +- "emf" rSub { size 8{1} } + ital " I" rSub { size 8{1} } R rSub { size 8{1} } = 0}} } {}

39.

(a) I1=4.75 AI1=4.75 A size 12{I rSub { size 8{1} } =4 cdot "75 A"} {}

(b) I2 =-3.5 AI2 =-3.5 A size 12{I rSub { size 8{"2 "} } = +- 3 "." "5 A"} {}{}

(c) I3=8.25 AI3=8.25 A size 12{I rSub { size 8{3} } =8 "." "25"" A"} {}

41.

(a) No, you would get inconsistent equations to solve.

(b) I1I2+I3I1I2+I3 size 12{I rSub { size 8{1} } <> I rSub { size 8{2} } +I rSub { size 8{3} } } {}. The assumed currents violate the junction rule.

42.

30 μA 30 μA size 12{"30" μA} {}

44.

1 . 98 k Ω 1 . 98 k Ω size 12{1 "." "98 k" %OMEGA } {}

46.

1 . 25 × 10 - 4 Ω 1 . 25 × 10 - 4 Ω size 12{1 "." "25"´"10" rSup { size 8{ +- 4} } %OMEGA } {}

48.

(a) 3.00 MΩ3.00 MΩ size 12{3 "." "00 M" %OMEGA } {}

(b) 2.99 kΩ2.99 kΩ size 12{2 "." "99 k" %OMEGA } {}

50.

(a) 1.58 mA

(b) 1.5848 V (need four digits to see the difference)

(c) 0.99990 (need five digits to see the difference from unity)

52.

15 . 0 μA 15 . 0 μA size 12{"15" "." 0 mA} {}

54.

(a)

The figure shows part of a circuit that includes an ammeter with internal resistance r connected in series with a load resistance R.
Figure 21.58

(b) 10.02 Ω10.02 Ω size 12{10 "." "02 " %OMEGA } {}

(c) 0.9980, or a 2.0×10–12.0×10–1 percent decrease

(d) 1.002, or a 2.0×10–12.0×10–1 percent increase

(e) Not significant.

56.

(a) 66.7Ω66.7Ω size 12{-"66" "." 7 %OMEGA } {}

(b) You can’t have negative resistance.

(c) It is unreasonable that IGIG size 12{I rSub { size 8{G} } } {} is greater than ItotItot size 12{I rSub { size 8{"tot"} } } {} (see Figure 21.33). You cannot achieve a full-scale deflection using a current less than the sensitivity of the galvanometer.

57.

24.0 V

59.

1 . 56 k Ω 1 . 56 k Ω size 12{1 "." "56 k" %OMEGA } {}

61.

(a) 2.00 V

(b) 9.68 Ω9.68 Ω size 12{9 "." "68 " %OMEGA } {}

62.
Range = 5 . 00 Ω to 5 . 00 k Ω Range = 5 . 00 Ω to 5 . 00 k Ω size 12{"Range=5" "." "00 " %OMEGA " to "5 "." "00"" k" %OMEGA } {}
63.

range 4 . 00 to 30 . 0 M Ω range 4 . 00 to 30 . 0 M Ω size 12{"range 4" "." "00 to 30" "." "0 M" %OMEGA } {}

65.

(a) 2.50 μF2.50 μF size 12{2 "." "50 "mF} {}

(b) 2.00 s

67.

86.5%

69.

(a) 1.25 kΩ1.25 kΩ size 12{1 "." "25 k" %OMEGA } {}

(b) 30.0 ms

71.

(a) 20.0 s

(b) 120 s

(c) 16.0 ms

73.

1 . 73 × 10 2 s 1 . 73 × 10 2 s size 12{1 "." "73" times "10" rSup { size 8{ - 2} } " s"} {}

74.

3 . 33 × 10 3 Ω 3 . 33 × 10 3 Ω size 12{3 "." "33"´"10" rSup { size 8{-3} } %OMEGA } {}

76.

(a) 4.99 s

(b) 3.87ºC3.87ºC size 12{3 "." "87"°C} {}

(c) 31.1 kΩ31.1 kΩ size 12{"31" "." "1 k" %OMEGA } {}

(d) No

Test Prep for AP® Courses

1.

(a), (b)

3.

(b)

5.

(a) 4-Ω resistor; (b) combination of 20-Ω, 20-Ω, and 10-Ω resistors; (c) 20 W in each 20-Ω resistor, 40 W in 10-Ω resistor, 64 W in 4-Ω resistor, total 144W total in resistors, output power is 144 W, yes they are equal (law of conservation of energy); (d) 4 Ω and 3 Ω for part (a) and no change for part (b); (e) no effect, it will remain the same.

7.

0.25 Ω, 0.50 Ω, no change

9.

a. (c)

b. (c)

c. (d)

d. (d)

11.
  1. I1 + I3 = I2
  2. E1 - I1R1 - I2R2 - I1r1 = 0; - E2 + I1R1 - I3R3 - I3r2 = 0
  3. I1 = 8/15 A, I2 = 7/15 A and I3 = -1/15 A
  4. I1 = 2/5 A, I2 = 3/5 A and I3 = 1/5 A
  5. PE1 = 18/5 W and PR1 = 24/25 W, PR2 = 54/25 W, PR3 = 12/25 W. Yes, PE1 = PR1+ PR2 + PR3
  6. R3, losses in the circuit
13.

(a) 20 mA, Figure 21.41, 5.5 s; (b) 24 mA, Figure 21.32, 2 s

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/college-physics-ap-courses/pages/1-connection-for-ap-r-courses
Citation information

© Mar 3, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.