Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
College Physics 2e

Section Summary

College Physics 2eSection Summary

27.1 The Wave Aspect of Light: Interference

  • Wave optics is the branch of optics that must be used when light interacts with small objects or whenever the wave characteristics of light are considered.
  • Wave characteristics are those associated with interference and diffraction.
  • Visible light is the type of electromagnetic wave to which our eyes respond and has a wavelength in the range of 380 to 760 nm.
  • Like all EM waves, the following relationship is valid in vacuum: c=fλc=fλ, where c=3×108m/sc=3×108m/s is the speed of light, ff is the frequency of the electromagnetic wave, and λλ is its wavelength in vacuum.
  • The wavelength λ nλ n of light in a medium with index of refraction nn is λ n=λ/nλ n=λ/n. Its frequency is the same as in vacuum.

27.2 Huygens's Principle: Diffraction

  • An accurate technique for determining how and where waves propagate is given by Huygens’s principle: Every point on a wavefront is a source of wavelets that spread out in the forward direction at the same speed as the wave itself. The new wavefront is a line tangent to all of the wavelets.
  • Diffraction is the bending of a wave around the edges of an opening or other obstacle.

27.3 Young’s Double Slit Experiment

  • Young’s double slit experiment gave definitive proof of the wave character of light.
  • An interference pattern is obtained by the superposition of light from two slits.
  • There is constructive interference when dsinθ=(form=0,1,1,2,2,…)dsinθ=(form=0,1,1,2,2,…), where dd is the distance between the slits, θθ is the angle relative to the incident direction, and mm is the order of the interference.
  • There is destructive interference when dsinθ=m+12λ(form=0,1,1,2,2,…)dsinθ=m+12λ(form=0,1,1,2,2,…).

27.4 Multiple Slit Diffraction

  • A diffraction grating is a large collection of evenly spaced parallel slits that produces an interference pattern similar to but sharper than that of a double slit.
  • There is constructive interference for a diffraction grating when dsinθ=(form=0,1,–1,2,–2,…)dsinθ=(form=0,1,–1,2,–2,…), where dd is the distance between slits in the grating, λλ is the wavelength of light, and mm is the order of the maximum.

27.5 Single Slit Diffraction

  • A single slit produces an interference pattern characterized by a broad central maximum with narrower and dimmer maxima to the sides.
  • There is destructive interference for a single slit when Dsinθ=, (form=1,–1, 2,–2,3,…)Dsinθ=, (form=1,–1, 2,–2,3,…), where DD is the slit width, λλ is the light’s wavelength, θθ is the angle relative to the original direction of the light, and mm is the order of the minimum. Note that there is no m=0m=0 minimum.

27.6 Limits of Resolution: The Rayleigh Criterion

  • Diffraction limits resolution.
  • For a circular aperture, lens, or mirror, the Rayleigh criterion states that two images are just resolvable when the center of the diffraction pattern of one is directly over the first minimum of the diffraction pattern of the other.
  • This occurs for two point objects separated by the angle θ=1.22λDθ=1.22λD, where λλ is the wavelength of light (or other electromagnetic radiation) and DD is the diameter of the aperture, lens, mirror, etc. This equation also gives the angular spreading of a source of light having a diameter DD.

27.7 Thin Film Interference

  • Thin film interference occurs between the light reflected from the top and bottom surfaces of a film. In addition to the path length difference, there can be a phase change.
  • When light reflects from a medium having an index of refraction greater than that of the medium in which it is traveling, a 180º180º phase change (or a λ/2λ/2 shift) occurs.

27.8 Polarization

  • Polarization is the attribute that wave oscillations have a definite direction relative to the direction of propagation of the wave.
  • EM waves are transverse waves that may be polarized.
  • The direction of polarization is defined to be the direction parallel to the electric field of the EM wave.
  • Unpolarized light is composed of many rays having random polarization directions.
  • Light can be polarized by passing it through a polarizing filter or other polarizing material. The intensity II of polarized light after passing through a polarizing filter is I=I0cos2θ,I=I0cos2θ, where I0I0 is the original intensity and θθ is the angle between the direction of polarization and the axis of the filter.
  • Polarization is also produced by reflection.
  • Brewster’s law states that reflected light will be completely polarized at the angle of reflection θbθb, known as Brewster’s angle, given by a statement known as Brewster’s law: tanθb=n2n1tanθb=n2n1, where n1n1 is the medium in which the incident and reflected light travel and n2n2 is the index of refraction of the medium that forms the interface that reflects the light.
  • Polarization can also be produced by scattering.
  • There are a number of types of optically active substances that rotate the direction of polarization of light passing through them.

27.9 *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light

  • To improve microscope images, various techniques utilizing the wave characteristics of light have been developed. Many of these enhance contrast with interference effects.
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information Citation information

© Jan 19, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.