Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Calculus Volume 3

A | Table of Integrals

Calculus Volume 3A | Table of Integrals

Basic Integrals

1. undu=un+1n+1+C,n1undu=un+1n+1+C,n1

2. duu=ln|u|+Cduu=ln|u|+C

3. eudu=eu+Ceudu=eu+C

4. audu=aulna+Caudu=aulna+C

5. sinudu=−cosu+Csinudu=−cosu+C

6. cosudu=sinu+Ccosudu=sinu+C

7. sec2udu=tanu+Csec2udu=tanu+C

8. csc2udu=−cotu+Ccsc2udu=−cotu+C

9. secutanudu=secu+Csecutanudu=secu+C

10. cscucotudu=−cscu+Ccscucotudu=−cscu+C

11. tanudu=ln|secu|+Ctanudu=ln|secu|+C

12. cotudu=ln|sinu|+Ccotudu=ln|sinu|+C

13. secudu=ln|secu+tanu|+Csecudu=ln|secu+tanu|+C

14. cscudu=ln|cscucotu|+Ccscudu=ln|cscucotu|+C

15. dua2u2=sin−1ua+Cdua2u2=sin−1ua+C

16. dua2+u2=1atan−1ua+Cdua2+u2=1atan−1ua+C

17. duuu2a2=1asec−1ua+Cduuu2a2=1asec−1ua+C

Trigonometric Integrals

18. sin2udu=12u14sin2u+Csin2udu=12u14sin2u+C

19. cos2udu=12u+14sin2u+Ccos2udu=12u+14sin2u+C

20. tan2udu=tanuu+Ctan2udu=tanuu+C

21. cot2udu=cotuu+Ccot2udu=cotuu+C

22. sin3udu=13(2+sin2u)cosu+Csin3udu=13(2+sin2u)cosu+C

23. cos3udu=13(2+cos2u)sinu+Ccos3udu=13(2+cos2u)sinu+C

24. tan3udu=12tan2u+ln|cosu|+Ctan3udu=12tan2u+ln|cosu|+C

25. cot3udu=12cot2uln|sinu|+Ccot3udu=12cot2uln|sinu|+C

26. sec3udu=12secutanu+12ln|secu+tanu|+Csec3udu=12secutanu+12ln|secu+tanu|+C

27. csc3udu=12cscucotu+12ln|cscucotu|+Ccsc3udu=12cscucotu+12ln|cscucotu|+C

28. sinnudu=1nsinn1ucosu+n1nsinn2udusinnudu=1nsinn1ucosu+n1nsinn2udu

29. cosnudu=1ncosn1usinu+n1ncosn2uducosnudu=1ncosn1usinu+n1ncosn2udu

30. tannudu=1n1tann1utann2udutannudu=1n1tann1utann2udu

31. cotnudu=−1n1cotn1ucotn2uducotnudu=−1n1cotn1ucotn2udu

32. secnudu=1n1tanusecn2u+n2n1secn2udusecnudu=1n1tanusecn2u+n2n1secn2udu

33. cscnudu=−1n1cotucscn2u+n2n1cscn2uducscnudu=−1n1cotucscn2u+n2n1cscn2udu

34. sinausinbudu=sin((ab)u)2(ab)sin((a+b)u)2(a+b)+Csinausinbudu=sin((ab)u)2(ab)sin((a+b)u)2(a+b)+C

35. cosaucosbudu=sin((ab)u)2(ab)+sin((a+b)u)2(a+b)+Ccosaucosbudu=sin((ab)u)2(ab)+sin((a+b)u)2(a+b)+C

36. sinaucosbudu=cos((ab)u)2(ab)cos((a+b)u)2(a+b)+Csinaucosbudu=cos((ab)u)2(ab)cos((a+b)u)2(a+b)+C

37. usinudu=sinuucosu+Cusinudu=sinuucosu+C

38. ucosudu=cosu+usinu+Cucosudu=cosu+usinu+C

39. unsinudu=uncosu+nun1cosuduunsinudu=uncosu+nun1cosudu

40. uncosudu=unsinunun1sinuduuncosudu=unsinunun1sinudu

41. sinnucosmudu=sinn1ucosm+1un+m+n1n+msinn2ucosmudu=sinn+1ucosm1un+m+m1n+msinnucosm2udusinnucosmudu=sinn1ucosm+1un+m+n1n+msinn2ucosmudu=sinn+1ucosm1un+m+m1n+msinnucosm2udu

Exponential and Logarithmic Integrals

42. ueaudu=1a2(au1)eau+Cueaudu=1a2(au1)eau+C

43. uneaudu=1auneaunaun1eauduuneaudu=1auneaunaun1eaudu

44. eausinbudu=eaua2+b2(asinbubcosbu)+Ceausinbudu=eaua2+b2(asinbubcosbu)+C

45. eaucosbudu=eaua2+b2(acosbu+bsinbu)+Ceaucosbudu=eaua2+b2(acosbu+bsinbu)+C

46. lnudu=ulnuu+Clnudu=ulnuu+C

47. unlnudu=un+1(n+1)2[(n+1)lnu1]+Cunlnudu=un+1(n+1)2[(n+1)lnu1]+C

48. 1ulnudu=ln|lnu|+C1ulnudu=ln|lnu|+C

Hyperbolic Integrals

49. sinhudu=coshu+Csinhudu=coshu+C

50. coshudu=sinhu+Ccoshudu=sinhu+C

51. tanhudu=lncoshu+Ctanhudu=lncoshu+C

52. cothudu=ln|sinhu|+Ccothudu=ln|sinhu|+C

53. sechudu=tan−1|sinhu|+Csechudu=tan−1|sinhu|+C

54. cschudu=ln|tanh12u|+Ccschudu=ln|tanh12u|+C

55. sech2udu=tanhu+Csech2udu=tanhu+C

56. csch2udu=cothu+Ccsch2udu=cothu+C

57. sechutanhudu=sechu+Csechutanhudu=sechu+C

58. cschucothudu=cschu+Ccschucothudu=cschu+C

Inverse Trigonometric Integrals

59. sin−1udu=usin−1u+1u2+Csin−1udu=usin−1u+1u2+C

60. cos−1udu=ucos−1u1u2+Ccos−1udu=ucos−1u1u2+C

61. tan−1udu=utan−1u12ln(1+u2)+Ctan−1udu=utan−1u12ln(1+u2)+C

62. usin−1udu=2u214sin−1u+u1u24+Cusin−1udu=2u214sin−1u+u1u24+C

63. ucos−1udu=2u214cos−1uu1u24+Cucos−1udu=2u214cos−1uu1u24+C

64. utan−1udu=u2+12tan−1uu2+Cutan−1udu=u2+12tan−1uu2+C

65. unsin−1udu=1n+1[un+1sin−1uun+1du1u2],n1unsin−1udu=1n+1[un+1sin−1uun+1du1u2],n1

66. uncos−1udu=1n+1[un+1cos−1u+un+1du1u2],n1uncos−1udu=1n+1[un+1cos−1u+un+1du1u2],n1

67. untan−1udu=1n+1[un+1tan−1uun+1du1+u2],n1untan−1udu=1n+1[un+1tan−1uun+1du1+u2],n1

Integrals Involving a2 + u2, a > 0

68. a2+u2du=u2a2+u2+a22ln(u+a2+u2)+Ca2+u2du=u2a2+u2+a22ln(u+a2+u2)+C

69. u2a2+u2du=u8(a2+2u2)a2+u2a48ln(u+a2+u2)+Cu2a2+u2du=u8(a2+2u2)a2+u2a48ln(u+a2+u2)+C

70. a2+u2udu=a2+u2aln|a+a2+u2u|+Ca2+u2udu=a2+u2aln|a+a2+u2u|+C

71. a2+u2u2du=a2+u2u+ln(u+a2+u2)+Ca2+u2u2du=a2+u2u+ln(u+a2+u2)+C

72. dua2+u2=ln(u+a2+u2)+Cdua2+u2=ln(u+a2+u2)+C

73. u2dua2+u2=u2(a2+u2)a22ln(u+a2+u2)+Cu2dua2+u2=u2(a2+u2)a22ln(u+a2+u2)+C

74. duua2+u2=1aln|a2+u2+au|+Cduua2+u2=1aln|a2+u2+au|+C

75. duu2a2+u2=a2+u2a2u+Cduu2a2+u2=a2+u2a2u+C

76. du(a2+u2)3/2=ua2a2+u2+Cdu(a2+u2)3/2=ua2a2+u2+C

Integrals Involving u2a2, a > 0

77. u2a2du=u2u2a2a22ln|u+u2a2|+Cu2a2du=u2u2a2a22ln|u+u2a2|+C

78. u2u2a2du=u8(2u2a2)u2a2a48ln|u+u2a2|+Cu2u2a2du=u8(2u2a2)u2a2a48ln|u+u2a2|+C

79. u2a2udu=u2a2acos−1a|u|+Cu2a2udu=u2a2acos−1a|u|+C

80. u2a2u2du=u2a2u+ln|u+u2a2|+Cu2a2u2du=u2a2u+ln|u+u2a2|+C

81. duu2a2=ln|u+u2a2|+Cduu2a2=ln|u+u2a2|+C

82. u2duu2a2=u2u2a2+a22ln|u+u2a2|+Cu2duu2a2=u2u2a2+a22ln|u+u2a2|+C

83. duu2u2a2=u2a2a2u+Cduu2u2a2=u2a2a2u+C

84a. du(u2a2)3/2=ua2u2a2+Cdu(u2a2)3/2=ua2u2a2+C

84b. duu2-a2=12alnu-au+a+Cduu2-a2=12alnu-au+a+C

Integrals Involving a2u2, a > 0

85. a2u2du=u2a2u2+a22sin−1ua+Ca2u2du=u2a2u2+a22sin−1ua+C

86. u2a2u2du=u8(2u2a2)a2u2+a48sin−1ua+Cu2a2u2du=u8(2u2a2)a2u2+a48sin−1ua+C

87. a2u2udu=a2u2aln|a+a2u2u|+Ca2u2udu=a2u2aln|a+a2u2u|+C

88. a2u2u2du=1ua2u2sin−1ua+Ca2u2u2du=1ua2u2sin−1ua+C

89. u2dua2u2=u2a2u2+a22sin−1ua+Cu2dua2u2=u2a2u2+a22sin−1ua+C

90. duua2u2=1aln|a+a2u2u|+Cduua2u2=1aln|a+a2u2u|+C

91. duu2a2u2=1a2ua2u2+Cduu2a2u2=1a2ua2u2+C

92. (a2u2)3/2du=u8(2u25a2)a2u2+3a48sin−1ua+C(a2u2)3/2du=u8(2u25a2)a2u2+3a48sin−1ua+C

93a. du(a2u2)3/2=ua2a2u2+Cdu(a2u2)3/2=ua2a2u2+C

93b. dua2-u2=12alnu+au-a+Cdua2-u2=12alnu+au-a+C

Integrals Involving 2auu2, a > 0

94. 2auu2du=ua22auu2+a22cos−1(aua)+C2auu2du=ua22auu2+a22cos−1(aua)+C

95. du2auu2=cos−1(aua)+Cdu2auu2=cos−1(aua)+C

96. u2auu2du=2u2au3a262auu2+a32cos−1(aua)+Cu2auu2du=2u2au3a262auu2+a32cos−1(aua)+C

97. duu2auu2=2auu2au+Cduu2auu2=2auu2au+C

Integrals Involving a + bu, a ≠ 0

98. udua+bu=1b2(a+bualn|a+bu|)+Cudua+bu=1b2(a+bualn|a+bu|)+C

99. u2dua+bu=12b3[(a+bu)24a(a+bu)+2a2ln|a+bu|]+Cu2dua+bu=12b3[(a+bu)24a(a+bu)+2a2ln|a+bu|]+C

100. duu(a+bu)=1aln|ua+bu|+Cduu(a+bu)=1aln|ua+bu|+C

101. duu2(a+bu)=1au+ba2ln|a+buu|+Cduu2(a+bu)=1au+ba2ln|a+buu|+C

102. udu(a+bu)2=ab2(a+bu)+1b2ln|a+bu|+Cudu(a+bu)2=ab2(a+bu)+1b2ln|a+bu|+C

103. uduu(a+bu)2=1a(a+bu)1a2ln|a+buu|+Cuduu(a+bu)2=1a(a+bu)1a2ln|a+buu|+C

104. u2du(a+bu)2=1b3(a+bua2a+bu2aln|a+bu|)+Cu2du(a+bu)2=1b3(a+bua2a+bu2aln|a+bu|)+C

105. ua+budu=215b2(3bu2a)(a+bu)3/2+Cua+budu=215b2(3bu2a)(a+bu)3/2+C

106. udua+bu=23b2(bu2a)a+bu+Cudua+bu=23b2(bu2a)a+bu+C

107. u2dua+bu=215b3(8a2+3b2u24abu)a+bu+Cu2dua+bu=215b3(8a2+3b2u24abu)a+bu+C

108. duua+bu=1aln|a+buaa+bu+a|+C,ifa>0=2atan1a+bua+C,ifa<0duua+bu=1aln|a+buaa+bu+a|+C,ifa>0=2atan1a+bua+C,ifa<0

109. a+buudu=2a+bu+aduua+bua+buudu=2a+bu+aduua+bu

110. a+buu2du=a+buu+b2duua+bua+buu2du=a+buu+b2duua+bu

111. una+budu=2b(2n+3)[un(a+bu)3/2naun1a+budu]una+budu=2b(2n+3)[un(a+bu)3/2naun1a+budu]

112. undua+bu=2una+bub(2n+1)2nab(2n+1)un1dua+buundua+bu=2una+bub(2n+1)2nab(2n+1)un1dua+bu

113. duuna+bu=a+bua(n1)un1b(2n3)2a(n1)duun1a+buduuna+bu=a+bua(n1)un1b(2n3)2a(n1)duun1a+bu

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction
Citation information

© Jul 25, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.