Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Calculus Volume 3

Key Equations

Calculus Volume 3Key Equations

Table of contents
  1. Preface
  2. 1 Parametric Equations and Polar Coordinates
    1. Introduction
    2. 1.1 Parametric Equations
    3. 1.2 Calculus of Parametric Curves
    4. 1.3 Polar Coordinates
    5. 1.4 Area and Arc Length in Polar Coordinates
    6. 1.5 Conic Sections
    7. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
      4. Review Exercises
  3. 2 Vectors in Space
    1. Introduction
    2. 2.1 Vectors in the Plane
    3. 2.2 Vectors in Three Dimensions
    4. 2.3 The Dot Product
    5. 2.4 The Cross Product
    6. 2.5 Equations of Lines and Planes in Space
    7. 2.6 Quadric Surfaces
    8. 2.7 Cylindrical and Spherical Coordinates
    9. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
      4. Review Exercises
  4. 3 Vector-Valued Functions
    1. Introduction
    2. 3.1 Vector-Valued Functions and Space Curves
    3. 3.2 Calculus of Vector-Valued Functions
    4. 3.3 Arc Length and Curvature
    5. 3.4 Motion in Space
    6. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
      4. Review Exercises
  5. 4 Differentiation of Functions of Several Variables
    1. Introduction
    2. 4.1 Functions of Several Variables
    3. 4.2 Limits and Continuity
    4. 4.3 Partial Derivatives
    5. 4.4 Tangent Planes and Linear Approximations
    6. 4.5 The Chain Rule
    7. 4.6 Directional Derivatives and the Gradient
    8. 4.7 Maxima/Minima Problems
    9. 4.8 Lagrange Multipliers
    10. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
      4. Review Exercises
  6. 5 Multiple Integration
    1. Introduction
    2. 5.1 Double Integrals over Rectangular Regions
    3. 5.2 Double Integrals over General Regions
    4. 5.3 Double Integrals in Polar Coordinates
    5. 5.4 Triple Integrals
    6. 5.5 Triple Integrals in Cylindrical and Spherical Coordinates
    7. 5.6 Calculating Centers of Mass and Moments of Inertia
    8. 5.7 Change of Variables in Multiple Integrals
    9. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
      4. Review Exercises
  7. 6 Vector Calculus
    1. Introduction
    2. 6.1 Vector Fields
    3. 6.2 Line Integrals
    4. 6.3 Conservative Vector Fields
    5. 6.4 Green’s Theorem
    6. 6.5 Divergence and Curl
    7. 6.6 Surface Integrals
    8. 6.7 Stokes’ Theorem
    9. 6.8 The Divergence Theorem
    10. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
      4. Review Exercises
  8. 7 Second-Order Differential Equations
    1. Introduction
    2. 7.1 Second-Order Linear Equations
    3. 7.2 Nonhomogeneous Linear Equations
    4. 7.3 Applications
    5. 7.4 Series Solutions of Differential Equations
    6. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
      4. Review Exercises
  9. A | Table of Integrals
  10. B | Table of Derivatives
  11. C | Review of Pre-Calculus
  12. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
  13. Index

Key Equations

Distance between two points in space: d=(x2x1)2+(y2y1)2+(z2z1)2d=(x2x1)2+(y2y1)2+(z2z1)2
Sphere with center (a,b,c)(a,b,c) and radius r: (xa)2+(yb)2+(zc)2=r2(xa)2+(yb)2+(zc)2=r2
Dot product of u and v u·v=u1v1+u2v2+u3v3=uvcosθu·v=u1v1+u2v2+u3v3=uvcosθ
Cosine of the angle formed by uu and vv cosθ=u·vuvcosθ=u·vuv
Vector projection of vv onto uu projuv=u·vu2uprojuv=u·vu2u
Scalar projection of vv onto uu compuv=u·vucompuv=u·vu
Work done by a force F to move an object through displacement vector PQPQ W=F·PQ=FPQcosθW=F·PQ=FPQcosθ
The cross product of two vectors in terms of the unit vectors u×v=(u2v3u3v2)i(u1v3u3v1)j+(u1v2u2v1)ku×v=(u2v3u3v2)i(u1v3u3v1)j+(u1v2u2v1)k
Vector Equation of a Line r=r0+tvr=r0+tv
Parametric Equations of a Line xx0a=yy0b=zz0cxx0a=yy0b=zz0c
Vector Equation of a Plane n·PQ=0n·PQ=0
Scalar Equation of a Plane a(xx0)+b(yy0)+c(zz0)=0a(xx0)+b(yy0)+c(zz0)=0
Distance between a Plane and a Point d=projnQP=|compnQP|=|QP·n|nd=projnQP=|compnQP|=|QP·n|n
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/calculus-volume-3/pages/1-introduction
Citation information

© Jul 17, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.