Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Search for key terms or text.

Checkpoint

4.2

5 5

4.3

y = 2 x 2 + 3 x + 2 y = 2 x 2 + 3 x + 2

4.5

y = 1 3 x 3 2 x 2 + 3 x 6 e x + 14 y = 1 3 x 3 2 x 2 + 3 x 6 e x + 14

4.6

v ( t ) = −9.8 t v ( t ) = −9.8 t

4.8



The equilibrium solutions are y=−2y=−2 and y=2.y=2. For this equation, y=−2y=−2 is an unstable equilibrium solution, and y=2y=2 is a semi-stable equilibrium solution.

4.9
nn xnxn yn=yn1+hf(xn1,yn1)yn=yn1+hf(xn1,yn1)
00 11 −2−2
11 1.11.1 y1=y0+hf(x0,y0)=−1.5y1=y0+hf(x0,y0)=−1.5
22 1.21.2 y2=y1+hf(x1,y1)=−1.1419y2=y1+hf(x1,y1)=−1.1419
33 1.31.3 y3=y2+hf(x2,y2)=−0.8387y3=y2+hf(x2,y2)=−0.8387
44 1.41.4 y4=y3+hf(x3,y3)=−0.5487y4=y3+hf(x3,y3)=−0.5487
55 1.51.5 y5=y4+hf(x4,y4)=−0.2442y5=y4+hf(x4,y4)=−0.2442
66 1.61.6 y6=y5+hf(x5,y5)=0.0993y6=y5+hf(x5,y5)=0.0993
77 1.71.7 y7=y6+hf(x6,y6)=0.5099y7=y6+hf(x6,y6)=0.5099
88 1.81.8 y8=y7+hf(x7,y7)=1.0272y8=y7+hf(x7,y7)=1.0272
99 1.91.9 y9=y8+hf(x8,y8)=1.7159y9=y8+hf(x8,y8)=1.7159
1010 22 y10=y9+hf(x9,y9)=2.6962y10=y9+hf(x9,y9)=2.6962
4.10

y = 2 + C e x 2 + 3 x y = 2 + C e x 2 + 3 x

4.11

y = 4 + 14 e x 2 + x 1 7 e x 2 + x y = 4 + 14 e x 2 + x 1 7 e x 2 + x

4.12

Initial value problem:

d u d t = 2.4 2 u 25 , u ( 0 ) = 3 d u d t = 2.4 2 u 25 , u ( 0 ) = 3

Solution:u(t)=3027e2t/25Solution:u(t)=3027e2t/25
Concentration: 30-27e-2t25Concentration: 30-27e-2t25

4.13
  1. Initial value problem
    dTdt=k(T70),T(0)=450dTdt=k(T70),T(0)=450
  2. T(t)=70+380ektT(t)=70+380ekt
  3. Approximately 114114 minutes.
4.14
  1. dPdt=0.04(1P750),P(0)=200dPdt=0.04(1P750),P(0)=200


  2. P(t)=3000e.04t11+4e.04tP(t)=3000e.04t11+4e.04t

  3. After 1212 months, the population will be P(12)278P(12)278 rabbits.

4.15

y+15x+3y=10x20x+3;p(x)=15x+3y+15x+3y=10x20x+3;p(x)=15x+3 and q(x)=10x20x+3q(x)=10x20x+3

4.16

y = x 3 + x 2 + C x 2 y = x 3 + x 2 + C x 2

4.17

y = - 2 x - 5 2 + 1 2 e 2 x y = - 2 x - 5 2 + 1 2 e 2 x

4.18
  1. dvdt=v9.8v(0)=0dvdt=v9.8v(0)=0
  2. v(t)=9.8(et1)v(t)=9.8(et1)
  3. limtv(t)=limt(9.8(et1))=−9.8m/s21.922mphlimtv(t)=limt(9.8(et1))=−9.8m/s21.922mph
4.19

Initial-value problem:

8 q + 1 0.02 q = 20 sin 5 t , q ( 0 ) = 4 8 q + 1 0.02 q = 20 sin 5 t , q ( 0 ) = 4

q ( t ) = 10 sin 5 t 8 cos 5 t + 172 e −6.25 t 41 q ( t ) = 10 sin 5 t 8 cos 5 t + 172 e −6.25 t 41

Section 4.1 Exercises

1.

1 1

3.

3 3

5.

1 1

7.

1 1

19.

y = 4 + 3 x 4 4 y = 4 + 3 x 4 4

21.

y = 1 2 e x 2 y = 1 2 e x 2

23.

y = 2 e 1 / x y = 2 e 1 / x

25.

u = sin −1 ( e −1 + t ) u = sin −1 ( e −1 + t )

27.

y = x + 1 1 x 1 y = x + 1 1 x 1

29.

y = C x + x ln x ln ( cos x ) y = C x + x ln x ln ( cos x )

31.

y = C + 4 x ln ( 4 ) y = C + 4 x ln ( 4 )

33.

y = 2 3 t 2 + 16 ( t 2 + 16 ) + C y = 2 3 t 2 + 16 ( t 2 + 16 ) + C

35.

x = 2 15 4 + t ( 3 t 2 + 4 t 32 ) + C x = 2 15 4 + t ( 3 t 2 + 4 t 32 ) + C

37.

y = C x y = C x

39.

y = 1 t 2 2 , y = t 2 2 1 y = 1 t 2 2 , y = t 2 2 1

41.

y = e t , y = e t y = e t , y = e t

43.

y = 2 ( t 2 + 5 ) , t = 3 5 y = 2 ( t 2 + 5 ) , t = 3 5

45.

y = 10 e −2 t , t = 1 2 ln ( 1 10 ) y = 10 e −2 t , t = 1 2 ln ( 1 10 )

47.

y=14(41e−4t),y=14(41e−4t), never

49.

Solution changes from increasing to decreasing at y(0)=0y(0)=0

51.

Solution changes from increasing to decreasing at y(0)=0y(0)=0

53.

v ( t ) = −32 t + a v ( t ) = −32 t + a

55.

00 ft/s

57.

52.35452.354 meters

59.

x=50t15π2cos(πt)+3π2,2x=50t15π2cos(πt)+3π2,2 hours 11 minute

61.

y = 4 e 3 t y = 4 e 3 t

63.

y = 3 2 t + t 2 y = 3 2 t + t 2

65.

y=1k(ekt1)y=1k(ekt1) and y=xy=x

Section 4.2 Exercises

67.


69.

y=0y=0 is a stable equilibrium

71.


73.

y=0y=0 is a stable equilibrium and y=2y=2 is unstable

75.

General solution is y=et+Cy=et+C.

77.

General solution is y=et(t-1)+Cy=et(t-1)+C.

79.


81.


83.


85.

E

87.

A

89.

B

91.

A

93.

C

95.

2.24,2.24, exact: 33

97.

7.739364,7.739364, exact: 5(e1)5(e1)

99.

−0.2535−0.2535 exact: 00

101.

1.345,1.345, exact: 1ln(2)1ln(2)

103.

−4,−4, exact: 1/21/2

105.


107.

y = 2 e t 2 / 2 y = 2 e t 2 / 2

109.

2 2

111.

3.2756 3.2756

113.

2e2e

Step Size Relative Error
h=0.1h=0.1 0.39350.3935
h=0.01h=0.01 0.061630.06163
h=0.001h=0.001 0.0066120.006612
h=0.0001h=0.0001 0.00066610.0006661
115.


117.

4.0741 e −10 4.0741 e −10

Section 4.3 Exercises

119.

y = e t 1 y = e t 1

121.

y = 1 + C e t y = 1 + C e t

123.

y = C x e −1 / x y = C x e −1 / x

125.

y = 1 C x 2 y = 1 C x 2

127.

y = 2 C + ln x y = 2 C + ln x

129.

y = C e x ( x + 1 ) + 1 y = C e x ( x + 1 ) + 1

131.

y = sin ( ln t + C ) y = sin ( ln t + C )

133.

y = ln ( e x ) y = ln ( e x )

135.

y = 1 2 e x 2 y = 1 2 e x 2

137.

y = tanh −1 ( x 2 2 ) y = tanh −1 ( x 2 2 )

139.

x = sin ( 1 - t + t ln t ) x = sin ( 1 - t + t ln t )

141.

y = ln ( ln ( 5 ) ) ln ( 2 5 x ) y = ln ( ln ( 5 ) ) ln ( 2 5 x )

143.

y=Ce−2x+12y=Ce−2x+12

145.

y=12Cexy=12Cex

147.

y=Cexxxy=Cexxx

149.

y = r d ( 1 e d t ) y = r d ( 1 e d t )

151.

y ( t ) = 10 9 e x / 50 y ( t ) = 10 9 e x / 50

153.

134.3134.3 kilograms

155.

720720 seconds

157.

2424 hours 5757 minutes

159.

T ( t ) = 20 + 50 e −0.125 t T ( t ) = 20 + 50 e −0.125 t

161.

T ( t ) = 20 + 38.5 e −0.125 t T ( t ) = 20 + 38.5 e −0.125 t

163.

y = ( c + b a ) e a x b a y = ( c + b a ) e a x b a

165.

y ( t ) = c L + ( I c L ) e r t / L y ( t ) = c L + ( I c L ) e r t / L

167.

y=40(1e−0.1t),40y=40(1e−0.1t),40 g/cm2

Section 4.4 Exercises

169.



P=0P=0 semi-stable

171.

P = 10 e 10 x e 10 x + 4 P = 10 e 10 x e 10 x + 4

173.

P ( t ) = 10000 e 0.02 t 150 + 50 e 0.02 t P ( t ) = 10000 e 0.02 t 150 + 50 e 0.02 t

175.

6969 hours 55 minutes

177.

88 years 1111 months

179.


181.



P1P1 semi-stable

183.



P2>0P2>0 stable

185.



P1=0P1=0 is semi-stable

187.

y = −20 4 × 10 −6 0.002 e 0.01 t y = −20 4 × 10 −6 0.002 e 0.01 t

189.


191.

P ( t ) = 850 + 500 e 0.009 t 85 + 5 e 0.009 t P ( t ) = 850 + 500 e 0.009 t 85 + 5 e 0.009 t

193.

1313 years months

195.


197.

31.46531.465 days

199.

September 20082008

201.

K + T 2 K + T 2

203.

r = 0.0405 r = 0.0405

205.

α = 0.0081 α = 0.0081

207.

Logistic: 361,361, Threshold: 436,436, Gompertz: 309.309.

Section 4.5 Exercises

209.

Yes

211.

Yes

213.

y x 3 y = sin x y x 3 y = sin x

215.

y + ( 3 x + 2 ) x y = e x y + ( 3 x + 2 ) x y = e x

217.

d y d t y x ( x + 1 ) = 0 d y d t y x ( x + 1 ) = 0

219.

e x e x

221.

ln ( cosh x ) ln ( cosh x )

223.

y = C e 3 x 2 3 y = C e 3 x 2 3

225.

y = C x 3 + 6 x 2 y = C x 3 + 6 x 2

227.

y = C e x 2 / 2 3 y = C e x 2 / 2 3

229.

y = C tan ( x 2 ) 2 x + 4 tan ( x 2 ) ln ( sin ( x 2 ) ) y = C tan ( x 2 ) 2 x + 4 tan ( x 2 ) ln ( sin ( x 2 ) )

231.

y = C x 3 x 2 y = C x 3 x 2

233.

y = C ( x + 2 ) 2 + 1 2 y = C ( x + 2 ) 2 + 1 2

235.

y = C x + 2 sin ( 3 t ) y = C x + 2 sin ( 3 t )

237.

y = C ( x + 1 ) 3 x 2 2 x 1 y = C ( x + 1 ) 3 x 2 2 x 1

239.

y = C e sinh −1 x 2 y = C e sinh −1 x 2

241.

y = x + 4 e x 1 y = x + 4 e x 1

243.

y = 3 x 2 ( x 2 1 ) y = 3 x 2 ( x 2 1 )

245.

y = 1 e tan −1 x y = 1 e tan −1 x

247.

y = ( x + 2 ) ln ( x + 2 2 ) y = ( x + 2 ) ln ( x + 2 2 )

249.

y = 2 e 2 x 2 x 2 x 1 y = 2 e 2 x 2 x 2 x 1

251.

v ( t ) = g m k ( 1 e k t / m ) v ( t ) = g m k ( 1 e k t / m )

253.

40.45140.451 seconds

255.

g m k g m k

257.

y = C e x a ( x + 1 ) y = C e x a ( x + 1 )

259.

y = C e x 2 / 2 a y = C e x 2 / 2 a

261.

y = e k t e t k 1 y = e k t e t k 1

Review Exercises

263.

F

265.

T

267.

y ( x ) = 2 x ln ( 2 ) + x cos −1 x 1 x 2 + C y ( x ) = 2 x ln ( 2 ) + x cos −1 x 1 x 2 + C

269.

y ( x ) = ln ( C cos x ) y ( x ) = ln ( C cos x )

271.

y ( x ) = e e C + x y ( x ) = e e C + x

273.

y ( x ) = 4 + 3 2 x 2 + 2 x sin x y ( x ) = 4 + 3 2 x 2 + 2 x sin x

275.

y ( x ) = 2 1 + 3 ( x 2 + 2 sin x ) y ( x ) = 2 1 + 3 ( x 2 + 2 sin x )

277.

y ( x ) = −2 x 2 2 x 1 3 2 3 e 3 x y ( x ) = −2 x 2 2 x 1 3 2 3 e 3 x

279.



y(x)=Cex+lnxy(x)=Cex+lnx

281.

Euler: 0.6939,0.6939, exact solution: y(x)=3xe−2x2+ln(3)y(x)=3xe−2x2+ln(3)

283.

40494049 second

285.

x(t)=5000+2459493t2459e5/3t,t=307.8x(t)=5000+2459493t2459e5/3t,t=307.8 seconds

287.

T ( t ) = 200 ( 1 e t / 1000 ) T ( t ) = 200 ( 1 e t / 1000 )

289.

P ( t ) = 1600000 e 0.02 t 9840 + 160 e 0.02 t P ( t ) = 1600000 e 0.02 t 9840 + 160 e 0.02 t

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:

    Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction

  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:

    Access for free at https://openstax.org/books/calculus-volume-2/pages/1-introduction

Citation information

© Jul 24, 2025 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.