Calculus Volume 1

# Chapter 1

## Checkpoint

1.1

$f(1)=3f(1)=3$ and $f(a+h)=a2+2ah+h2−3a−3h+5f(a+h)=a2+2ah+h2−3a−3h+5$

1.2

Domain = ${x|x≤2},{x|x≤2},$ range = ${y|y≥5}{y|y≥5}$

1.3

$x = 0 , 2 , 3 x = 0 , 2 , 3$

1.4

$(fg)(x)=x2+32x−5.(fg)(x)=x2+32x−5.$ The domain is ${x|x≠52}.{x|x≠52}.$

1.5

$( f ∘ g ) ( x ) = 2 − 5 x . ( f ∘ g ) ( x ) = 2 − 5 x .$

1.6

$( g ∘ f ) ( x ) = 0.63 x ( g ∘ f ) ( x ) = 0.63 x$

1.7

$f(x)f(x)$ is odd.

1.8

Domain = $(−∞,∞),(−∞,∞),$ range = ${y|y≥−4}.{y|y≥−4}.$

1.9

$m=1/2.m=1/2.$ The point-slope form is

$y − 4 = 1 2 ( x − 1 ) . y − 4 = 1 2 ( x − 1 ) .$

The slope-intercept form is

$y = 1 2 x + 7 2 . y = 1 2 x + 7 2 .$

1.10

The zeros are $x=1±3/3.x=1±3/3.$ The parabola opens upward.

1.11

The domain is the set of real numbers $xx$ such that $x≠1/2.x≠1/2.$ The range is the set ${y|y≠5/2}.{y|y≠5/2}.$

1.12

The domain of $ff$ is $(−∞, ∞).(−∞, ∞).$ The domain of $gg$ is ${x|x≥1/5}.{x|x≥1/5}.$

1.13

Algebraic

1.15

$C ( x ) = { 49 , 0 < x ≤ 1 70 , 1 < x ≤ 2 91 , 2 < x ≤ 3 C ( x ) = { 49 , 0 < x ≤ 1 70 , 1 < x ≤ 2 91 , 2 < x ≤ 3$

1.16

Shift the graph $y=x2y=x2$ to the left 1 unit, reflect about the $xx$-axis, then shift down 4 units.

1.17

$7π/6;7π/6;$ 330°

1.18

$cos ( 3 π / 4 ) = − 2 / 2 ; sin ( − π / 6 ) = −1 / 2 cos ( 3 π / 4 ) = − 2 / 2 ; sin ( − π / 6 ) = −1 / 2$

1.19

$1010$ ft

1.20

$θ=3π2+2nπ,π6+2nπ,5π6+2nπθ=3π2+2nπ,π6+2nπ,5π6+2nπ$ for $n=0,±1,±2,…n=0,±1,±2,…$

1.22

To graph $f(x)=3sin(4x)−5,f(x)=3sin(4x)−5,$ the graph of $y=sin(x)y=sin(x)$ needs to be compressed horizontally by a factor of 4, then stretched vertically by a factor of 3, then shifted down 5 units. The function $ff$ will have a period of $π/2π/2$ and an amplitude of 3.

1.23

No.

1.24

$f−1(x)=2xx−3.f−1(x)=2xx−3.$ The domain of $f−1f−1$ is ${x|x≠3}.{x|x≠3}.$ The range of $f−1f−1$ is ${y|y≠2}.{y|y≠2}.$

1.26

The domain of $f−1f−1$ is $(0,∞).(0,∞).$ The range of $f−1f−1$ is $(−∞,0).(−∞,0).$ The inverse function is given by the formula $f−1(x)=−1/x.f−1(x)=−1/x.$

1.27

$f ( 4 ) = 900 ; f ( 10 ) = 24 , 300 . f ( 4 ) = 900 ; f ( 10 ) = 24 , 300 .$

1.28

$x / ( 2 y 3 ) x / ( 2 y 3 )$

1.29

$A(t)=750e0.04t.A(t)=750e0.04t.$ After $3030$ years, there will be approximately $2,490.09.2,490.09.$

1.30

$x = ln 3 2 x = ln 3 2$

1.31

$x = 1 e x = 1 e$

1.32

$1.29248 1.29248$

1.33

The magnitude $8.48.4$ earthquake is roughly $1010$ times as severe as the magnitude $7.47.4$ earthquake.

1.34

$( x 2 + x −2 ) / 2 ( x 2 + x −2 ) / 2$

1.35

$1 2 ln ( 3 ) ≈ 0.5493 . 1 2 ln ( 3 ) ≈ 0.5493 .$

## Section 1.1 Exercises

1.

a. Domain = ${−3,−2,−1,0,1,2,3},{−3,−2,−1,0,1,2,3},$ range = ${0,1,4,9}{0,1,4,9}$ b. Yes, a function

3.

a. Domain = ${0,1,2,3},{0,1,2,3},$ range = ${−3,−2,−1,0,1,2,3}{−3,−2,−1,0,1,2,3}$ b. No, not a function

5.

a. Domain = ${3,5,8,10,15,21,33},{3,5,8,10,15,21,33},$ range = ${0,1,2,3}{0,1,2,3}$ b. Yes, a function

7.

a. $−2−2$ b. 3 c. 13 d. $−5x−2−5x−2$ e. $5a−25a−2$ f. $5a+5h−25a+5h−2$

9.

a. Undefined b. 2 c. $2323$ d. $−2x−2x$ e $2a2a$ f. $2a+h2a+h$

11.

a. $55$ b. $1111$ c. $2323$ d. $−6x+5−6x+5$ e. $6a+56a+5$ f. $6a+6h+56a+6h+5$

13.

a. 9 b. 9 c. 9 d. 9 e. 9 f. 9

15.

$x≥18;y≥0;x=18;x≥18;y≥0;x=18;$ no y-intercept

17.

$x ≥ −2 ; y ≥ −1 ; x = −1 ; y = −1 + 2 x ≥ −2 ; y ≥ −1 ; x = −1 ; y = −1 + 2$

19.

$x≠4;y≠0;x≠4;y≠0;$ no x-intercept; $y=−34y=−34$

21.

$x>5;y>0;x>5;y>0;$ no intercepts

23.

25.

27.

29.

Function; a. Domain: all real numbers, range: $y≥0y≥0$ b. $x=±1x=±1$ c. $y=1y=1$ d. $−1 and $1 e. $−∞ and $0 f. Not constant g. y-axis h. Even

31.

Function; a. Domain: all real numbers, range: $−1.5≤y≤1.5−1.5≤y≤1.5$ b. $x=0x=0$ c. $y=0y=0$ d. $all real numbersall real numbers$ e. None f. Not constant g. Origin h. Odd

33.

Function; a. Domain: $−∞ range: $−2≤y≤2−2≤y≤2$ b. $x=0x=0$ c. $y=0y=0$ d. $−2 e. Not decreasing f. $−∞ and $2 g. Origin h. Odd

35.

Function; a. Domain: $−4≤x≤4,−4≤x≤4,$ range: $−4≤y≤4−4≤y≤4$ b. $x=1.2x=1.2$ c. $y=4y=4$ d. Not increasing e. $0 f. $−4 g. No Symmetry h. Neither

37.

a. $5x2+x−8;5x2+x−8;$ all real numbers b. $−5x2+x−8;−5x2+x−8;$ all real numbers c. $5x3−40x2;5x3−40x2;$ all real numbers d. $x−85x2;x≠0x−85x2;x≠0$

39.

a. $−2x+6;−2x+6;$ all real numbers b. $−2x2+2x+12;−2x2+2x+12;$ all real numbers c. $−x4+2x3+12x2−18x−27;−x4+2x3+12x2−18x−27;$ all real numbers d. $−x+3x+1;x≠−1,3−x+3x+1;x≠−1,3$

41.

a. $6+2x;x≠06+2x;x≠0$ b. 6; $x≠0x≠0$ c. $6x+1x2;x≠06x+1x2;x≠0$ d. $6x+1;x≠06x+1;x≠0$

43.

a. $4x+3;4x+3;$ all real numbers b. $4x+15;4x+15;$ all real numbers

45.

a. $x4−6x2+16;x4−6x2+16;$ all real numbers b. $x4+14x2+46;x4+14x2+46;$ all real numbers

47.

a. $3x4+x;x≠0,−43x4+x;x≠0,−4$ b. $4x+23;x≠−124x+23;x≠−12$

49.

a. Yes, because there is only one winner for each year. b. No, because there are three teams that won more than once during the years 2001 to 2012.

51.

a. $V(s)=s3V(s)=s3$ b. $V(11.8)≈1643;V(11.8)≈1643;$ a cube of side length 11.8 each has a volume of approximately 1643 cubic units.

53.

a. $N(x)=15xN(x)=15x$ b. i. $N(20)=15(20)=300;N(20)=15(20)=300;$ therefore, the vehicle can travel 300 mi on a full tank of gas. Ii. $N(15)=225;N(15)=225;$ therefore, the vehicle can travel 225 mi on 3/4 of a tank of gas. c. Domain: $0≤x≤20;0≤x≤20;$ range: $[0,300][0,300]$ d. The driver had to stop at least once, given that it takes approximately 39 gal of gas to drive a total of 578 mi.

55.

a. $A(t)=A(r(t))=π·(6−5t2+1)2A(t)=A(r(t))=π·(6−5t2+1)2$ b. Exact: $121π4;121π4;$ approximately 95 cm2 c. $C(t)=C(r(t))=2π(6−5t2+1)C(t)=C(r(t))=2π(6−5t2+1)$ d. Exact: $11π;11π;$ approximately 35 cm

57.

a. $S(x)=8.5x+750S(x)=8.5x+750$ b. $962.50,$1090, $1217.50 c. 77 skateboards ## Section 1.2 Exercises 59. a. −1 b. Decreasing 61. a. 3/4 b. Increasing 63. a. 4/3 b. Increasing 65. a. 0 b. Horizontal 67. $y = −6 x + 9 y = −6 x + 9$ 69. $y = 1 3 x + 4 y = 1 3 x + 4$ 71. $y = 1 2 x y = 1 2 x$ 73. $y = 3 5 x − 3 y = 3 5 x − 3$ 75. a. $(m=2,b=−3)(m=2,b=−3)$ b. 77. a. $(m=−6,b=0)(m=−6,b=0)$ b. 79. a. $(m=0,b=−6)(m=0,b=−6)$ b. 81. a. $(m=−23,b=2)(m=−23,b=2)$ b. 83. a. 2 b. $52,−1;52,−1;$ c. −5 d. Both ends rise e. Neither 85. a. 2 b. $±2±2$ c. −1 d. Both ends rise e. Even 87. a. 3 b. 0, $±3±3$ c. 0 d. Left end rises, right end falls e. Odd 89. 91. 93. 95. a. $13,−3,513,−3,5$ b. 97. a. $−32,−12,4−32,−12,4$ b. 99. True; $n=3n=3$ 101. False; $f(x)=xb,f(x)=xb,$ where $bb$ is a real-valued constant, is a power function 103. a. $V(t)=−2733t+20500V(t)=−2733t+20500$ b. $(0,20,500)(0,20,500)$ means that the initial purchase price of the equipment is$20,500; $(7.5,0)(7.5,0)$ means that in 7.5 years the computer equipment has no value. c. $6835 d. In approximately 6.4 years 105. a. $C=0.75x+125C=0.75x+125$ b.$245 c. 167 cupcakes

107.

a. $V(t)=−1500t+26,000V(t)=−1500t+26,000$ b. In 4 years, the value of the car is $20,000. 109.$30,337.50

111.

96% of the total capacity

## Section 1.3 Exercises

113.

$4 π 3 rad 4 π 3 rad$

115.

$− π 3 − π 3$

117.

$11 π 6 rad 11 π 6 rad$

119.

$210 ° 210 °$

121.

$−540 ° −540 °$

123.

$−0.5 −0.5$

125.

$− 2 2 − 2 2$

127.

$3 − 1 2 2 3 − 1 2 2$

129.

a. $b=5.7b=5.7$ b. $sinA=47,cosA=5.77,tanA=45.7,cscA=74,secA=75.7,cotA=5.74sinA=47,cosA=5.77,tanA=45.7,cscA=74,secA=75.7,cotA=5.74$

131.

a. $c=151.7c=151.7$ b. $sinA=0.5623,cosA=0.8273,tanA=0.6797,cscA=1.778,secA=1.209,cotA=1.471sinA=0.5623,cosA=0.8273,tanA=0.6797,cscA=1.778,secA=1.209,cotA=1.471$

133.

a. $c=85c=85$ b. $sinA=8485,cosA=1385,tanA=8413,cscA=8584,secA=8513,cotA=1384sinA=8485,cosA=1385,tanA=8413,cscA=8584,secA=8513,cotA=1384$

135.

a. $y=2425y=2425$ b. $sinθ=2425,cosθ=725,tanθ=247,cscθ=2524,secθ=257,cotθ=724sinθ=2425,cosθ=725,tanθ=247,cscθ=2524,secθ=257,cotθ=724$

137.

a. $x=−23x=−23$ b. $sinθ=73,cosθ=−23,tanθ=−142,cscθ=377,secθ=−322,cotθ=−147sinθ=73,cosθ=−23,tanθ=−142,cscθ=377,secθ=−322,cotθ=−147$

139.

$sec 2 x sec 2 x$

141.

$sin 2 x sin 2 x$

143.

$sec 2 θ sec 2 θ$

145.

$1 sin t ( = csc t ) 1 sin t ( = csc t )$

155.

${ π 6 , 5 π 6 } { π 6 , 5 π 6 }$

157.

${ π 4 , 3 π 4 , 5 π 4 , 7 π 4 } { π 4 , 3 π 4 , 5 π 4 , 7 π 4 }$

159.

${ 2 π 3 , 5 π 3 } { 2 π 3 , 5 π 3 }$

161.

${ 0 , π , π 3 , 5 π 3 } { 0 , π , π 3 , 5 π 3 }$

163.

$y = 4 sin ( π 4 x ) y = 4 sin ( π 4 x )$

165.

$y = cos ( 2 π x ) y = cos ( 2 π x )$

167.

a. 1 b. $2π2π$ c. $π4π4$ units to the right

169.

a. $1212$ b. $8π8π$ c. No phase shift

171.

a. 3 b. $22$ c. $2π2π$ units to the left

173.

Approximately 42 in.

175.

177.

$≈ 30.9 in 2 ≈ 30.9 in 2$

179.

a. π/184; the voltage repeats every π/184 sec b. Approximately 59 periods

181.

a. Amplitude = $10;period=2410;period=24$ b. $47.4°F47.4°F$ c. 14 hours later, or 2 p.m. d.

## Section 1.4 Exercises

183.

Not one-to-one

185.

Not one-to-one

187.

One-to-one

189.

a. $f−1(x)=x+4f−1(x)=x+4$ b. Domain $:x≥−4,range:y≥0:x≥−4,range:y≥0$

191.

a. $f−1(x)=x−13f−1(x)=x−13$ b. Domain: all real numbers, range: all real numbers

193.

a. $f−1(x)=x2+1,f−1(x)=x2+1,$ b. Domain: $x≥0,x≥0,$ range: $y≥1y≥1$

195.

197.

199.

These are inverses.

201.

These are not inverses.

203.

These are inverses.

205.

These are inverses.

207.

$π 6 π 6$

209.

$π 4 π 4$

211.

$π 6 π 6$

213.

$2 2 2 2$

215.

$− π 6 − π 6$

217.

a. $x=f−1(V)=0.04−V500x=f−1(V)=0.04−V500$ b. The inverse function determines the distance from the center of the artery at which blood is flowing with velocity V. c. 0.1 cm; 0.14 cm; 0.17 cm

219.

a. $31,250,$66,667, $107,143 b. $(p=85CC+75)(p=85CC+75)$ c. 34 ppb 221. a. $~92°~92°$ b. $~42°~42°$ c. $~27°~27°$ 223. $x≈6.69,8.51;x≈6.69,8.51;$ so, the temperature occurs on June 21 and August 15 225. $~ 1.5 sec ~ 1.5 sec$ 227. $tan−1(tan(2.1))≈−1.0416;tan−1(tan(2.1))≈−1.0416;$ the expression does not equal 2.1 since $2.1>1.57=π22.1>1.57=π2$—in other words, it is not in the restricted domain of $tanx.cos−1(cos(2.1))=2.1,tanx.cos−1(cos(2.1))=2.1,$ since 2.1 is in the restricted domain of $cosx.cosx.$ ## Section 1.5 Exercises 229. a. 125 b. 2.24 c. 9.74 231. a. 0.01 b. 10,000 c. 46.42 233. d 235. b 237. e 239. Domain: all real numbers, range: $(2,∞),y=2(2,∞),y=2$ 241. Domain: all real numbers, range: $(0,∞),y=0(0,∞),y=0$ 243. Domain: all real numbers, range: $(−∞,1),y=1(−∞,1),y=1$ 245. Domain: all real numbers, range: $(−1,∞),y=−1(−1,∞),y=−1$ 247. $8 1 / 3 = 2 8 1 / 3 = 2$ 249. $5 2 = 25 5 2 = 25$ 251. $e −3 = 1 e 3 e −3 = 1 e 3$ 253. $e 0 = 1 e 0 = 1$ 255. $log 4 ( 1 16 ) = −2 log 4 ( 1 16 ) = −2$ 257. $log 9 1 = 0 log 9 1 = 0$ 259. $log 64 4 = 1 3 log 64 4 = 1 3$ 261. $log 9 150 = y log 9 150 = y$ 263. $log 4 0.125 = − 3 2 log 4 0.125 = − 3 2$ 265. Domain: $(1,∞),(1,∞),$ range: $(−∞,∞),x=1(−∞,∞),x=1$ 267. Domain: $(0,∞),(0,∞),$ range: $(−∞,∞),x=0(−∞,∞),x=0$ 269. Domain: $(−1,∞),(−1,∞),$ range: $(−∞,∞),x=−1(−∞,∞),x=−1$ 271. $2 + 3 log 3 a − log 3 b 2 + 3 log 3 a − log 3 b$ 273. $3 2 + 1 2 log 5 x + 3 2 log 5 y 3 2 + 1 2 log 5 x + 3 2 log 5 y$ 275. $− 3 2 + ln 6 − 3 2 + ln 6$ 277. $ln 15 3 ln 15 3$ 279. $3 2 3 2$ 281. $log 7.21 log 7.21$ 283. $2 3 + log 11 3 log 7 2 3 + log 11 3 log 7$ 285. $x = 1 25 x = 1 25$ 287. $x = 4 x = 4$ 289. $x = 3 x = 3$ 291. $1 + 5 1 + 5$ 293. $( log 82 log 7 ≈ 2.2646 ) ( log 82 log 7 ≈ 2.2646 )$ 295. $( log 211 log 0.5 ≈ − 7.7211 ) ( log 211 log 0.5 ≈ − 7.7211 )$ 297. $( log 0.452 log 0.2 ≈ 0.4934 ) ( log 0.452 log 0.2 ≈ 0.4934 )$ 299. $~ 17 , 491 ~ 17 , 491$ 301. Approximately$131,653 is accumulated in 5 years.

303.

i. a. pH = 8 b. Base ii. a. pH = 3 b. Acid iii. a. pH = 4 b. Acid

305.

a. $~333~333$ million b. 94 years from 2013, or in 2107

307.

a. $k≈0.0578k≈0.0578$ b. $≈92≈92$ hours

309.

The San Francisco earthquake was $103.4or≈2512103.4or≈2512$ times more intense than the Japanese earthquake.

## Review Exercises

311.

False

313.

False

315.

Domain: $x>5,x>5,$ range: all real numbers

317.

Domain: $x>2x>2$ and $x<−4,x<−4,$ range: all real numbers

319.

Degree of 3, $yy$-intercept: 0, zeros: 0, $3−1,−1−33−1,−1−3$

321.

$cos2x-sin2x=cos2x=1-2sin2x=2cos2x-1cos2x-sin2x=cos2x=1-2sin2x=2cos2x-1$

323.

$0 , ± 2 π 0 , ± 2 π$

325.

4

327.

One-to-one; yes, the function has an inverse; inverse: $f−1(x)=1yf−1(x)=1y$

329.

$x ≥ − 3 2 , f −1 ( x ) = − 3 2 + 1 2 4 y − 7 x ≥ − 3 2 , f −1 ( x ) = − 3 2 + 1 2 4 y − 7$

331.

a. $C(x)=300+7xC(x)=300+7x$ b. 100 shirts

333.

The population is less than 20,000 from December 8 through January 23 and more than 140,000 from May 29 through August 2

335.

78.51%

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

• If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
• If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution: