Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Search for key terms or text.

Checkpoint

2.1

2.25

2.2

12.006001

2.3

17 unit2

2.4

lim x 1 1 x 1 x 1 = −1 lim x 1 1 x 1 x 1 = −1

2.5

lim x 2 h ( x ) = −1 . lim x 2 h ( x ) = −1 .

2.6

limx2|x24|x2limx2|x24|x2 does not exist.

2.7

a. limx2|x24|x2=−4;limx2|x24|x2=−4; b. limx2+|x24|x2=4limx2+|x24|x2=4

2.8

a. limx01x2=+;limx01x2=+; b. limx0+1x2=+;limx0+1x2=+; c. limx01x2=+limx01x2=+

2.9

a. limx21(x2)3=;limx21(x2)3=; b. limx2+1(x2)3=+;limx2+1(x2)3=+; c. limx21(x2)3limx21(x2)3 DNE. The line x=2x=2 is the vertical asymptote of f(x)=1/(x2)3.f(x)=1/(x2)3.

2.10

Does not exist.

2.11

11 10 11 10

2.12

−13;

2.13

1 3 1 3

2.14

1 4 1 4

2.15

−1;

2.16

1 4 1 4

2.17



limx−1f(x)=−1limx−1f(x)=−1

2.18

+∞

2.19

0

2.20

0

2.21

f is not continuous at 1 because f(1)=23=limx1f(x).f(1)=23=limx1f(x).

2.22

f(x)f(x) is continuous at every real number.

2.23

Discontinuous at 1; removable

2.24

[ −3 , + ) [ −3 , + )

2.25

0

2.26

f(0)=1>0,f(1)=−2<0;f(x)f(0)=1>0,f(1)=−2<0;f(x) is continuous over [0,1].[0,1]. It must have a zero on this interval.

2.27

Let ε>0;ε>0; choose δ=ε3;δ=ε3; assume 0<|x2|<δ.0<|x2|<δ.

Thus, |(3x2)4|=|3x6|=|3|·|x2|<3·δ=3·(ε/3)=ε.|(3x2)4|=|3x6|=|3|·|x2|<3·δ=3·(ε/3)=ε.

Therefore, limx23x2=4.limx23x2=4.

2.28

Choose δ=min{9(3ε)2,(3+ε)29}.δ=min{9(3ε)2,(3+ε)29}.

2.29

| x 2 1 | = | x 1 | · | x + 1 | < ε / 3 · 3 = ε | x 2 1 | = | x 1 | · | x + 1 | < ε / 3 · 3 = ε

2.30

δ = ε 2 δ = ε 2

Section 2.1 Exercises

1.

a. 2.2100000; b. 2.0201000; c. 2.0020010; d. 2.0002000; e. (1.1000000, 2.2100000); f. (1.0100000, 2.0201000); g. (1.0010000, 2.0020010); h. (1.0001000, 2.0002000); i. 2.1000000; j. 2.0100000; k. 2.0010000; l. 2.0001000

3.

y = 2 x y = 2 x

5.

3

7.

a. 2.0248457; b. 2.0024984; c. 2.0002500; d. 2.0000250; e. (4.1000000,2.0248457); f. (4.0100000,2.0024984); g. (4.0010000,2.0002500); h. (4.00010000,2.0000250); i. 0.24845673; j. 0.24984395; k. 0.24998438; l. 0.24999844

9.

y = x 4 + 1 y = x 4 + 1

11.

π

13.

a. −0.95238095; b. −0.99009901; c. −0.99502488; d. −0.99900100; e. (−1;.0500000,−0;.95238095); f. (−1;.0100000,−0;.9909901); g. (−1;.0050000,−0;.99502488); h. (1.0010000,−0;.99900100); i. −0.95238095; j. −0.99009901; k. −0.99502488; l. −0.99900100

15.

y = x 2 y = x 2

17.

−49 m/sec (velocity of the ball is 49 m/sec downward)

19.

5.2 m/sec

21.

−9.8 m/sec

23.

6 m/sec

25.

Under, 1 unit2; over: 4 unit2. The exact area of the two triangles is 12(1)(1)+12(2)(2)=2.5units2.12(1)(1)+12(2)(2)=2.5units2.

27.

Under, 0.96 unit2; over, 1.92 unit2. The exact area of the semicircle with radius 1 is π(1)22=π2π(1)22=π2 unit2.

29.

Approximately 1.3333333 unit2

Section 2.2 Exercises

31.

limx1f(x)limx1f(x) does not exist because limx1f(x)=−2limx1+f(x)=2.limx1f(x)=−2limx1+f(x)=2.

33.

lim x 0 ( 1 + x ) 1 / x = 2.7183 lim x 0 ( 1 + x ) 1 / x = 2.7183

35.

a. 1.98669331; b. 1.99986667; c. 1.99999867; d. 1.99999999; e. 1.98669331; f. 1.99986667; g. 1.99999867; h. 1.99999999; limx0sin2xx=2limx0sin2xx=2

37.

lim x 0 sin a x x = a lim x 0 sin a x x = a

39.

a. −0.80000000; b. −0.98000000; c. −0.99800000; d. −0.99980000; e. −1.2000000; f. −1.0200000; g. −1.0020000; h. −1.0002000; limx1(12x)=−1limx1(12x)=−1

41.

a. −37.931934; b. −3377.9264; c. −333,777.93; d. −33,337,778; e. −29.032258; f. −3289.0365; g. −332,889.04; h. −33,328,889 limx0z1z2(z+3)=limx0z1z2(z+3)=

43.

a. 0.13495277; b. 0.12594300; c. 0.12509381; d. 0.12500938; e. 0.11614402; f. 0.12406794; g. 0.12490631; h. 0.12499063; limx212xx24=0.1250=18limx212xx24=0.1250=18

45.

a. 10.00000; b. 100.00000; c. 1000.0000; d. 10,000.000; Guess: limα0+1αcos(πα)=,limα0+1αcos(πα)=, actual: DNE

47.

False; limx−2+f(x)=+limx−2+f(x)=+

49.

False; limx6f(x)limx6f(x) DNE since limx6f(x)=2limx6f(x)=2 and limx6+f(x)=5.limx6+f(x)=5.

51.

2

53.

1

55.

1

57.

DNE

59.

0

61.

DNE

63.

2

65.

3

67.

DNE

69.

0

71.

−2

73.

DNE

75.

0

77.

Answers may vary.

79.

Answers may vary.

81.

a. ρ2ρ2 b. ρ1ρ1 c. DNE unless ρ1=ρ2.ρ1=ρ2. As you approach xSFxSF from the left, you are in the high-density area of the shock. When you approach from the right, you have not experienced the “shock” yet and are at a lower density.

Section 2.3 Exercises

83.

Use constant multiple law and difference law: limx0(4x22x+3)=4limx0x22limx0x+limx03=3limx0(4x22x+3)=4limx0x22limx0x+limx03=3

85.

Use root law: limx−2x26x+3=limx−2(x26x+3)=19limx−2x26x+3=limx−2(x26x+3)=19

87.

49

89.

1

91.

5 7 5 7

93.

limx4x216x4=161644=00;limx4x216x4=161644=00; then, limx4x216x4=limx4(x+4)(x4)x4=8limx4x216x4=limx4(x+4)(x4)x4=8

95.

limx63x182x12=18181212=00;limx63x182x12=18181212=00; then, limx63x182x12=limx63(x6)2(x6)=32limx63x182x12=limx63(x6)2(x6)=32

97.

limx9t9t3=9933=00;limx9t9t3=9933=00; then, limt9t9t3=limt9t9t3t+3t+3=limt9(t+3)=6limt9t9t3=limt9t9t3t+3t+3=limt9(t+3)=6

99.

limθπsinθtanθ=sinπtanπ=00;limθπsinθtanθ=sinπtanπ=00; then, limθπsinθtanθ=limθπsinθsinθcosθ=limθπcosθ=−1limθπsinθtanθ=limθπsinθsinθcosθ=limθπcosθ=−1

101.

limx1/22x2+3x22x1=12+32211=00;limx1/22x2+3x22x1=12+32211=00; then, limx1/22x2+3x22x1=limx1/2(2x1)(x+2)2x1=52limx1/22x2+3x22x1=limx1/2(2x1)(x+2)2x1=52

103.

−∞

105.

−∞

107.

lim x 6 2 f ( x ) g ( x ) = 2 lim x 6 f ( x ) lim x 6 g ( x ) = 72 lim x 6 2 f ( x ) g ( x ) = 2 lim x 6 f ( x ) lim x 6 g ( x ) = 72

109.

lim x 6 ( f ( x ) + 1 3 g ( x ) ) = lim x 6 f ( x ) + 1 3 lim x 6 g ( x ) = 7 lim x 6 ( f ( x ) + 1 3 g ( x ) ) = lim x 6 f ( x ) + 1 3 lim x 6 g ( x ) = 7

111.

lim x 6 g ( x ) f ( x ) = lim x 6 g ( x ) lim x 6 f ( x ) = 5 lim x 6 g ( x ) f ( x ) = lim x 6 g ( x ) lim x 6 f ( x ) = 5

113.

lim x 6 [ ( x + 1 ) f ( x ) ] = ( lim x 6 ( x + 1 ) ) ( lim x 6 f ( x ) ) = 28 lim x 6 [ ( x + 1 ) f ( x ) ] = ( lim x 6 ( x + 1 ) ) ( lim x 6 f ( x ) ) = 28

115.



a. 9; b. 7

117.



a. 1; b. 1

119.

lim x −3 ( f ( x ) 3 g ( x ) ) = lim x −3 f ( x ) 3 lim x −3 g ( x ) = 0 + 6 = 6 lim x −3 ( f ( x ) 3 g ( x ) ) = lim x −3 f ( x ) 3 lim x −3 g ( x ) = 0 + 6 = 6

121.

lim x −5 2 + g ( x ) f ( x ) = 2 + ( lim x −5 g ( x ) ) lim x −5 f ( x ) = 2 + 0 2 = 1 lim x −5 2 + g ( x ) f ( x ) = 2 + ( lim x −5 g ( x ) ) lim x −5 f ( x ) = 2 + 0 2 = 1

123.

lim x 1 f ( x ) g ( x ) 3 = lim x 1 f ( x ) lim x 1 g ( x ) 3 = 2 + 5 3 = 7 3 lim x 1 f ( x ) g ( x ) 3 = lim x 1 f ( x ) lim x 1 g ( x ) 3 = 2 + 5 3 = 7 3

125.

lim x −9 ( x f ( x ) + 2 g ( x ) ) = ( lim x −9 x ) ( lim x −9 f ( x ) ) + 2 lim x −9 ( g ( x ) ) = ( −9 ) ( 6 ) + 2 ( 4 ) = −46 lim x −9 ( x f ( x ) + 2 g ( x ) ) = ( lim x −9 x ) ( lim x −9 f ( x ) ) + 2 lim x −9 ( g ( x ) ) = ( −9 ) ( 6 ) + 2 ( 4 ) = −46

127.

The limit is zero.

129.

a.


b. ∞. The magnitude of the electric field as you approach the particle q becomes infinite. It does not make physical sense to evaluate negative distance.

Section 2.4 Exercises

131.

The function is defined for all x in the interval (0,).(0,).

133.

Removable discontinuity at x=0;x=0; infinite discontinuity at x=1x=1

135.

Infinite discontinuity at x=ln2x=ln2

137.

Infinite discontinuities at x=(2k+1)π4,x=(2k+1)π4, for k=0,±1,±2,±3,…k=0,±1,±2,±3,…

139.

No. It is a removable discontinuity.

141.

Yes. It is continuous.

143.

Yes. It is continuous.

145.

k = −5 k = −5

147.

k = −1 k = −1

149.

k = 16 3 k = 16 3

151.

Since both s and y=ty=t are continuous everywhere, then h(t)=s(t)th(t)=s(t)t is continuous everywhere and, in particular, it is continuous over the closed interval [2,5].[2,5]. Also, h(2)=3>0h(2)=3>0 and h(5)=−3<0.h(5)=−3<0. Therefore, by the IVT, there is a value x=cx=c such that h(c)=0.h(c)=0.

153.

The function f(x)=2xx3f(x)=2xx3 is continuous over the interval [1.25,1.375][1.25,1.375] and has opposite signs at the endpoints.

155.

a.


b. It is not possible to redefine f(1)f(1) since the discontinuity is a jump discontinuity.

157.

Answers may vary; see the following example:

159.

Answers may vary; see the following example:

161.

False. It is continuous over (,0)(0,).(,0)(0,).

163.

False. Consider f(x)={xifx04ifx=0.f(x)={xifx04ifx=0.

165.

False. IVT only says that there is at least one solution; it does not guarantee that there is exactly one. Consider f(x)=cos(x)f(x)=cos(x) on [π,2π].[π,2π].

167.

False. The IVT does not work in reverse! Consider (x1)2(x1)2 over the interval [−2,2].[−2,2].

169.

R = 0.0001519 m R = 0.0001519 m

171.

D = 345,826 km D = 345,826 km

173.

For all values of a,f(a)a,f(a) is defined, limθaf(θ)limθaf(θ) exists, and limθaf(θ)=f(a).limθaf(θ)=f(a). Therefore, f(θ)f(θ) is continuous everywhere.

175.

Nowhere

Section 2.5 Exercises

177.

For every ε>0,ε>0, there exists a δ>0,δ>0, so that if 0<|tb|<δ,0<|tb|<δ, then |g(t)M|<ε|g(t)M|<ε

179.

For every ε>0,ε>0, there exists a δ>0,δ>0, so that if 0<|xa|<δ,0<|xa|<δ, then |φ(x)A|<ε|φ(x)A|<ε

181.

δ 0.25 δ 0.25

183.

δ 2 δ 2

185.

δ 1 δ 1

187.

δ < 0.3900 δ < 0.3900

189.

Let δ=ε.δ=ε. If 0<|x3|<ε,0<|x3|<ε, then |x+36|=|x3|<ε.|x+36|=|x3|<ε.

191.

Let δ=ε4.δ=ε4. If 0<|x|<ε4,0<|x|<ε4, then |x4|=x4<ε.|x4|=x4<ε.

193.

Let δ=ε2.δ=ε2. If 5ε2<x<5,5ε2<x<5, then |5x|=5x<ε.|5x|=5x<ε.

195.

Let δ=ε/5.δ=ε/5. If 1ε/5<x<1,1ε/5<x<1, then |f(x)3|=5x5<ε.|f(x)3|=5x5<ε.

197.

Let δ=3M.δ=3M. If 0<|x+1|<3M,0<|x+1|<3M, then f(x)=3(x+1)2>M.f(x)=3(x+1)2>M.

199.

0.328 cm, ε=8,δ=0.33,a=12,L=144ε=8,δ=0.33,a=12,L=144

201.

Answers may vary.

203.

0

205.

lim x a f x + lim x a g x = L + M lim x a f x + lim x a g x = L + M

207.

Answers may vary.

Review Exercises

209.

False

211.

False. A removable discontinuity is possible.

213.

5

215.

8 / 7 8 / 7

217.

DNE

219.

2 / 3 2 / 3

221.

−4;

223.

Since −1cos(2πx)1,−1cos(2πx)1, then x2x2cos(2πx)x2.x2x2cos(2πx)x2. Since limx0x2=0=limx0x2,limx0x2=0=limx0x2, it follows that limx0x2cos(2πx)=0.limx0x2cos(2πx)=0.

225.

[ 2 , ] [ 2 , ]

227.

c = −1 c = −1

229.

δ = ε 3 δ = ε 3

231.

0 m / sec 0 m / sec

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:

    Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction

  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:

    Access for free at https://openstax.org/books/calculus-volume-1/pages/1-introduction

Citation information

© Jul 24, 2025 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.