Omitir e ir al contenidoIr a la página de accesibilidadMenú de atajos de teclado
Logo de OpenStax
Cálculo volumen 2

Ejercicios de repaso

Cálculo volumen 2Ejercicios de repaso

Ejercicios de repaso

Verdadero o falso. Justifique su respuesta con una prueba o un contraejemplo. Supongamos que todas las funciones ff y gg son continuas en sus dominios.

439.

Si los valores de f(x)>0,f(x)>0f(x)>0,f(x)>0 para todo x,x, entonces la regla de la derecha subestima la integral abf(x).abf(x). Utilice un gráfico para justificar su respuesta.

440.

a b f ( x ) 2 d x = a b f ( x ) d x a b f ( x ) d x a b f ( x ) 2 d x = a b f ( x ) d x a b f ( x ) d x

441.

Si f(x)g(x)f(x)g(x) para todo x[a,b],x[a,b], entonces abf(x)abg(x).abf(x)abg(x).

442.

Toda función continua tiene una antiderivada.

Evalúe las sumas de Riemann L4yR4L4yR4 en las siguientes funciones en el intervalo especificado. Compare su respuesta con la respuesta exacta, cuando sea posible, o utilice una calculadora para definir la respuesta.

443.

y=3x2 2 x+1y=3x2 2 x+1 en [−1,1][−1,1]

444.

y=ln(x2 +1)y=ln(x2 +1) en [0,e][0,e]

445.

y=x2 senxy=x2 senx en [0,π][0,π]

446.

y=x+1xy=x+1x en [1,4][1,4]

Evalúe las siguientes integrales.

447.

–1 1 ( x 3 2 x 2 + 4 x ) d x –1 1 ( x 3 2 x 2 + 4 x ) d x

448.

0 4 3 t 1 + 6 t 2 d t 0 4 3 t 1 + 6 t 2 d t

449.

π / 3 π / 2 2 sec ( 2 θ ) tan ( 2 θ ) d θ π / 3 π / 2 2 sec ( 2 θ ) tan ( 2 θ ) d θ

450.

0 π / 4 e cos 2 x sen x cos x d x 0 π / 4 e cos 2 x sen x cos x d x

Calcule la antiderivada.

451.

d x ( x + 4 ) 3 d x ( x + 4 ) 3

452.

x ln ( x 2 ) d x x ln ( x 2 ) d x

453.

4 x 2 1 x 6 d x 4 x 2 1 x 6 d x

454.

e 2 x 1 + e 4 x d x e 2 x 1 + e 4 x d x

Halle la derivada.

455.

d d t 0 t sen x 1 + x 2 d x d d t 0 t sen x 1 + x 2 d x

456.

d d x 1 x 3 4 t 2 d t d d x 1 x 3 4 t 2 d t

457.

d d x 1 ln ( x ) ( 4 t + e t ) d t d d x 1 ln ( x ) ( 4 t + e t ) d t

458.

d d x 0 cos x e t 2 d t d d x 0 cos x e t 2 d t

Los siguientes problemas consideran el costo promedio histórico por gigabyte de RAM en una computadora

Año Variación en 5 años ($)
1980 0
1985 −5.468.750
1990 755.495
1995 –73.005
2000 –29.768
2005 –918
2010 –177
459.

Si el costo promedio por gigabyte de RAM en 2010 es de 12 dólares, halle el costo medio por gigabyte de RAM en 1980.

460.

El costo promedio por gigabyte de RAM puede aproximarse mediante la función C(t)=8,500,000(0,65)t,C(t)=8,500,000(0,65)t, donde tt se mide en años desde 1980 y CC es el costo en dólares. Halle el costo promedio por gigabyte de memoria RAM entre 1980 y 2010.

461.

Halle el costo promedio de 1GB de RAM entre 2005 y 2010.

462.

La velocidad de la bala de un rifle puede aproximarse por v(t)=6.400t2 6.505t+2.686,v(t)=6.400t2 6.505t+2.686, donde tt es segundos después del disparo y vv es la velocidad medida en pies por segundo. Esta ecuación solo modela la velocidad durante el primer medio segundo después del disparo 0t0,5.0t0,5. ¿Cuál es la distancia total que recorre la bala en 0,5 segundos?

463.

¿Cuál es la velocidad media de la bala durante el primer medio segundo?

Cita/Atribución

Este libro no puede ser utilizado en la formación de grandes modelos de lenguaje ni incorporado de otra manera en grandes modelos de lenguaje u ofertas de IA generativa sin el permiso de OpenStax.

¿Desea citar, compartir o modificar este libro? Este libro utiliza la Creative Commons Attribution-NonCommercial-ShareAlike License y debe atribuir a OpenStax.

Información de atribución
  • Si redistribuye todo o parte de este libro en formato impreso, debe incluir en cada página física la siguiente atribución:
    Acceso gratis en https://openstax.org/books/c%C3%A1lculo-volumen-2/pages/1-introduccion
  • Si redistribuye todo o parte de este libro en formato digital, debe incluir en cada vista de la página digital la siguiente atribución:
    Acceso gratuito en https://openstax.org/books/c%C3%A1lculo-volumen-2/pages/1-introduccion
Información sobre citas

© 2 mar. 2022 OpenStax. El contenido de los libros de texto que produce OpenStax tiene una licencia de Creative Commons Attribution-NonCommercial-ShareAlike License . El nombre de OpenStax, el logotipo de OpenStax, las portadas de libros de OpenStax, el nombre de OpenStax CNX y el logotipo de OpenStax CNX no están sujetos a la licencia de Creative Commons y no se pueden reproducir sin el previo y expreso consentimiento por escrito de Rice University.