Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Algebra and Trigonometry

Chapter 1

Algebra and TrigonometryChapter 1

Try It

1.1 Real Numbers: Algebra Essentials

1.
  1. 11 1 11 1
  2. 3 1 3 1
  3. 4 1 4 1
2.
  1. 4 (or 4.0), terminating;
  2. 0. 615384 ¯ , 0. 615384 ¯ , repeating;
  3. –0.85, terminating
3.
  1. rational and repeating;
  2. rational and terminating;
  3. irrational;
  4. rational and terminating;
  5. irrational
4.
  1. positive, irrational; right
  2. negative, rational; left
  3. positive, rational; right
  4. negative, irrational; left
  5. positive, rational; right
5.
N W I Q Q'
a. 35 7 35 7 X X
b. 0 X X X
c. 169 169 X X X X
d. 24 24 X
e. 4.763763763... X
6.
  1. 10
  2. 2
  3. 4.5
  4. 25
  5. 26
7.
  1. 11, commutative property of multiplication, associative property of multiplication, inverse property of multiplication, identity property of multiplication;
  2. 33, distributive property;
  3. 26, distributive property;
  4. 4 9 , 4 9 , commutative property of addition, associative property of addition, inverse property of addition, identity property of addition;
  5. 0, distributive property, inverse property of addition, identity property of addition
8.
Constants Variables
a. 2πr( r+h ) 2πr( r+h ) 2,π 2,π r,h r,h
b. 2(L + W) 2 L, W
c. 4 y 3 +y 4 y 3 +y 4 y y
9.
  1. 5;
  2. 11;
  3. 9;
  4. 26
10.
  1. 4;
  2. 11;
  3. 121 3 π 121 3 π ;
  4. 1728;
  5. 3
11.

1,152 cm2

12.
  1. −2y−2zor −2( y+z ); −2y−2zor −2( y+z );
  2. 2 t −1; 2 t −1;
  3. 3pq−4p+q; 3pq−4p+q;
  4. 7r−2s+6 7r−2s+6
13.

A=P( 1+rt ) A=P( 1+rt )

1.2 Exponents and Scientific Notation

1.
  1. k 15 k 15
  2. ( 2 y ) 5 ( 2 y ) 5
  3. t 14 t 14
2.
  1. s 7 s 7
  2. ( −3 ) 5 ( −3 ) 5
  3. ( e f 2 ) 2 ( e f 2 ) 2
3.
  1. ( 3y ) 24 ( 3y ) 24
  2. t 35 t 35
  3. ( g ) 16 ( g ) 16
4.
  1. 1 1
  2. 1 2 1 2
  3. 1 1
  4. 1 1
5.
  1. 1 ( −3t ) 6 1 ( −3t ) 6
  2. 1 f 3 1 f 3
  3. 2 5 k 3 2 5 k 3
6.
  1. t −5 = 1 t 5 t −5 = 1 t 5
  2. 1 25 1 25
7.
  1. g 10 h 15 g 10 h 15
  2. 125 t 3 125 t 3
  3. −27 y 15 −27 y 15
  4. 1 a 18 b 21 1 a 18 b 21
  5. r 12 s 8 r 12 s 8
8.
  1. b 15 c 3 b 15 c 3
  2. 625 u 32 625 u 32
  3. −1 w 105 −1 w 105
  4. q 24 p 32 q 24 p 32
  5. 1 c 20 d 12 1 c 20 d 12
9.
  1. v 6 8 u 3 v 6 8 u 3
  2. 1 x 3 1 x 3
  3. e 4 f 4 e 4 f 4
  4. 27r s 27r s
  5. 1 1
  6. 16 h 10 49 16 h 10 49
10.
  1. $1.52× 10 5 $1.52× 10 5
  2. 7.158× 10 9 7.158× 10 9
  3. $8.55× 10 13 $8.55× 10 13
  4. 3.34× 10 −9 3.34× 10 −9
  5. 7.15× 10 −8 7.15× 10 −8
11.
  1. 703,000 703,000
  2. −816,000,000,000 −816,000,000,000
  3. −0.00000000000039 −0.00000000000039
  4. 0.000008 0.000008
12.
  1. 8.475× 10 6 8.475× 10 6
  2. 8× 10 8 8× 10 8
  3. 2.976× 10 13 2.976× 10 13
  4. 4.3× 10 6 4.3× 10 6
  5. 1.24× 10 15 1.24× 10 15
13.

Number of cells: 3× 10 13 ; 3× 10 13 ; length of a cell: 8× 10 −6 8× 10 −6 m; total length: 2.4× 10 8 2.4× 10 8 m or 240,000,000 240,000,000 m.

1.3 Radicals and Rational Exponents

1.
  1. 15 15
  2. 3 3
  3. 4 4
  4. 17 17
2.

5| x || y | 2yz . 5| x || y | 2yz . Notice the absolute value signs around x and y? That’s because their value must be positive!

3.

10| x | 10| x |

4.

x 2 3 y 2 . x 2 3 y 2 . We do not need the absolute value signs for y 2 y 2 because that term will always be nonnegative.

5.

b 4 3ab b 4 3ab

6.

13 5 13 5

7.

0 0

8.

6 6 6 6

9.

14−7 3 14−7 3

10.
  1. −6 −6
  2. 6 6
  3. 88 9 3 88 9 3
11.

( 9 ) 5 = 3 5 =243 ( 9 ) 5 = 3 5 =243

12.

x (5y) 9 2 x (5y) 9 2

13.

28 x 23 15 28 x 23 15

1.4 Polynomials

1.

The degree is 6, the leading term is x 6 , x 6 , and the leading coefficient is −1. −1.

2.

2 x 3 +7 x 2 −4x−3 2 x 3 +7 x 2 −4x−3

3.

−11 x 3 x 2 +7x−9 −11 x 3 x 2 +7x−9

4.

3 x 4 −10 x 3 −8 x 2 +21x+14 3 x 4 −10 x 3 −8 x 2 +21x+14

5.

3 x 2 +16x−35 3 x 2 +16x−35

6.

16 x 2 −8x+1 16 x 2 −8x+1

7.

4 x 2 −49 4 x 2 −49

8.

6 x 2 +21xy−29x−7y+9 6 x 2 +21xy−29x−7y+9

1.5 Factoring Polynomials

1.

( b 2 a)(x+6) ( b 2 a)(x+6)

2.

(x−6)(x−1) (x−6)(x−1)

3.
  1. (2x+3)(x+3) (2x+3)(x+3)
  2. ( 3x−1 )( 2x+1 ) ( 3x−1 )( 2x+1 )
4.

(7x−1) 2 (7x−1) 2

5.

(9y+10)(9y10) (9y+10)(9y10)

6.

(6a+b)(36 a 2 −6ab+ b 2 ) (6a+b)(36 a 2 −6ab+ b 2 )

7.

(10x1)( 100 x 2 +10x+1 ) (10x1)( 100 x 2 +10x+1 )

8.

(5a−1) 1 4 (17a−2) (5a−1) 1 4 (17a−2)

1.6 Rational Expressions

1.

1 x+6 1 x+6

2.

(x+5)(x+6) (x+2)(x+4) (x+5)(x+6) (x+2)(x+4)

3.

1 1

4.

2(x−7) (x+5)(x−3) 2(x−7) (x+5)(x−3)

5.

x 2 y 2 x y 2 x 2 y 2 x y 2

1.1 Section Exercises

1.

irrational number. The square root of two does not terminate, and it does not repeat a pattern. It cannot be written as a quotient of two integers, so it is irrational.

3.

The Associative Properties state that the sum or product of multiple numbers can be grouped differently without affecting the result. This is because the same operation is performed (either addition or subtraction), so the terms can be re-ordered.

5.

−6 −6

7.

−2 −2

9.

−9 −9

11.

9

13.

-2

15.

4

17.

0

19.

9

21.

25

23.

−6 −6

25.

17

27.

4

29.

14 14

31.

−66 −66

33.

–12 –12

35.

–44 –44

37.

–2 –2

39.

−14y11 −14y11

41.

−4b+1 −4b+1

43.

43z3 43z3

45.

9y+45 9y+45

47.

−6b+6 −6b+6

49.

16x 3 16x 3

51.

9x 9x

53.

1 2 ( 4010 )+5 1 2 ( 4010 )+5

55.

irrational number

57.

g+4002( 600 )=1200 g+4002( 600 )=1200

59.

inverse property of addition

61.

68.4

63.

true

65.

irrational

67.

rational

1.2 Section Exercises

1.

No, the two expressions are not the same. An exponent tells how many times you multiply the base. So 2 3 2 3 is the same as 2×2×2, 2×2×2, which is 8. 3 2 3 2 is the same as 3×3, 3×3, which is 9.

3.

It is a method of writing very small and very large numbers.

5.

81

7.

243

9.

1 16 1 16

11.

1 11 1 11

13.

1

15.

4 9 4 9

17.

12 40 12 40

19.

1 7 9 1 7 9

21.

3.14× 10 5 3.14× 10 5

23.

16,000,000,000

25.

a 4 a 4

27.

b 6 c 8 b 6 c 8

29.

a b 2 d 3 a b 2 d 3

31.

m 4 m 4

33.

q 5 p 6 q 5 p 6

35.

y 21 x 14 y 21 x 14

37.

25 25

39.

72 a 2 72 a 2

41.

c 3 b 9 c 3 b 9

43.

y 81 z 6 y 81 z 6

45.

0.00135 m

47.

1.0995× 10 12 1.0995× 10 12

49.

0.00000000003397 in.

51.

12,230,590,464 m 66 m 66

53.

a 14 1296 a 14 1296

55.

n a 9 c n a 9 c

57.

1 a 6 b 6 c 6 1 a 6 b 6 c 6

59.

0.000000000000000000000000000000000662606957

1.3 Section Exercises

1.

When there is no index, it is assumed to be 2 or the square root. The expression would only be equal to the radicand if the index were 1.

3.

The principal square root is the nonnegative root of the number.

5.

16

7.

10

9.

14

11.

7 2 7 2

13.

9 5 5 9 5 5

15.

25

17.

2 2

19.

2 6 2 6

21.

5 6 5 6

23.

6 35 6 35

25.

2 15 2 15

27.

6 10 19 6 10 19

29.

1+ 17 2 1+ 17 2

31.

7 2 3 7 2 3

33.

15 5 15 5

35.

20 x 2 20 x 2

37.

7 p 7 p

39.

17 m 2 m 17 m 2 m

41.

2b a 2b a

43.

15x 7 15x 7

45.

5 y 4 2 5 y 4 2

47.

4 7d 7d 4 7d 7d

49.

2 2 +2 6x 1−3x 2 2 +2 6x 1−3x

51.

w 2w w 2w

53.

3 x 3x 2 3 x 3x 2

55.

5 n 5 5 5 n 5 5

57.

9 m 19m 9 m 19m

59.

2 3d 2 3d

61.

3 2 x 2 4 2 3 2 x 2 4 2

63.

6z 2 3 6z 2 3

65.

500 feet

67.

−5 2 −6 7 −5 2 −6 7

69.

mnc a 9 cmn mnc a 9 cmn

71.

2 2 x+ 2 4 2 2 x+ 2 4

73.

3 3 3 3

1.4 Section Exercises

1.

The statement is true. In standard form, the polynomial with the highest value exponent is placed first and is the leading term. The degree of a polynomial is the value of the highest exponent, which in standard form is also the exponent of the leading term.

3.

Use the distributive property, multiply, combine like terms, and simplify.

5.

2

7.

8

9.

2

11.

4 x 2 +3x+19 4 x 2 +3x+19

13.

3 w 2 +30w+21 3 w 2 +30w+21

15.

11 b 4 −9 b 3 +12 b 2 −7b+8 11 b 4 −9 b 3 +12 b 2 −7b+8

17.

24 x 2 −4x−8 24 x 2 −4x−8

19.

24 b 4 −48 b 2 +24 24 b 4 −48 b 2 +24

21.

99 v 2 −202v+99 99 v 2 −202v+99

23.

8 n 3 −4 n 2 +72n−36 8 n 3 −4 n 2 +72n−36

25.

9 y 2 −42y+49 9 y 2 −42y+49

27.

16 p 2 +72p+81 16 p 2 +72p+81

29.

9 y 2 −36y+36 9 y 2 −36y+36

31.

16 c 2 −1 16 c 2 −1

33.

225 n 2 −36 225 n 2 −36

35.

−16 m 2 +16 −16 m 2 +16

37.

121 q 2 −100 121 q 2 −100

39.

16 t 4 +4 t 3 −32 t 2 t+7 16 t 4 +4 t 3 −32 t 2 t+7

41.

y 3 −6 y 2 y+18 y 3 −6 y 2 y+18

43.

3 p 3 p 2 −12p+10 3 p 3 p 2 −12p+10

45.

a 2 b 2 a 2 b 2

47.

16 t 2 −40tu+25 u 2 16 t 2 −40tu+25 u 2

49.

4 t 2 + x 2 +4t−5txx 4 t 2 + x 2 +4t−5txx

51.

24 r 2 +22rd−7 d 2 24 r 2 +22rd−7 d 2

53.

32 x 2 −4x−3 32 x 2 −4x−3 m2

55.

32 t 3 100 t 2 +40t+38 32 t 3 100 t 2 +40t+38

57.

a 4 +4 a 3 c−16a c 3 −16 c 4 a 4 +4 a 3 c−16a c 3 −16 c 4

1.5 Section Exercises

1.

The terms of a polynomial do not have to have a common factor for the entire polynomial to be factorable. For example, 4 x 2 4 x 2 and −9 y 2 −9 y 2 don’t have a common factor, but the whole polynomial is still factorable: 4 x 2 −9 y 2 =( 2x+3y )( 2x−3y ). 4 x 2 −9 y 2 =( 2x+3y )( 2x−3y ).

3.

Divide the x x term into the sum of two terms, factor each portion of the expression separately, and then factor out the GCF of the entire expression.

5.

7m 7m

7.

10 m 3 10 m 3

9.

y y

11.

( 2a−3 )( a+6 ) ( 2a−3 )( a+6 )

13.

( 3n−11 )( 2n+1 ) ( 3n−11 )( 2n+1 )

15.

( p+1 )( 2p−7 ) ( p+1 )( 2p−7 )

17.

( 5h+3 )( 2h−3 ) ( 5h+3 )( 2h−3 )

19.

( 9d−1 )( d−8 ) ( 9d−1 )( d−8 )

21.

( 12t+13 )( t−1 ) ( 12t+13 )( t−1 )

23.

(4x+10)(4x10) (4x+10)(4x10)

25.

(11p+13)(11p13) (11p+13)(11p13)

27.

(19d+9)(19d9) (19d+9)(19d9)

29.

(12b+5c)(12b5c) (12b+5c)(12b5c)

31.

( 7n+12 ) 2 ( 7n+12 ) 2

33.

( 15y+4 ) 2 ( 15y+4 ) 2

35.

(5p12) 2 (5p12) 2

37.

(x+6)( x 2 6x+36) (x+6)( x 2 6x+36)

39.

(5a+7)(25 a 2 35a+49) (5a+7)(25 a 2 35a+49)

41.

(4x5)(16 x 2 +20x+25) (4x5)(16 x 2 +20x+25)

43.

(5r+12s)(25 r 2 60rs+144 s 2 ) (5r+12s)(25 r 2 60rs+144 s 2 )

45.

( 2c+3 ) 1 4 ( −7c15 ) ( 2c+3 ) 1 4 ( −7c15 )

47.

( x+2 ) 2 5 ( 19x+10 ) ( x+2 ) 2 5 ( 19x+10 )

49.

( 2z9 ) 3 2 ( 27z99 ) ( 2z9 ) 3 2 ( 27z99 )

51.

( 14x−3 )( 7x+9 ) ( 14x−3 )( 7x+9 )

53.

( 3x+5 )( 3x−5 ) ( 3x+5 )( 3x−5 )

55.

(2x+5) 2 (2x5) 2 (2x+5) 2 (2x5) 2

57.

(4 z 2 +49 a 2 )(2z+7a)(2z7a) (4 z 2 +49 a 2 )(2z+7a)(2z7a)

59.

1 ( 4x+9 )( 4x−9 )( 2x+3 ) 1 ( 4x+9 )( 4x−9 )( 2x+3 )

1.6 Section Exercises

1.

You can factor the numerator and denominator to see if any of the terms can cancel one another out.

3.

True. Multiplication and division do not require finding the LCD because the denominators can be combined through those operations, whereas addition and subtraction require like terms.

5.

y+5 y+6 y+5 y+6

7.

3b+3 3b+3

9.

x+4 2x+2 x+4 2x+2

11.

a+3 a3 a+3 a3

13.

3n8 7n3 3n8 7n3

15.

c6 c+6 c6 c+6

17.

1 1

19.

d 2 25 25 d 2 1 d 2 25 25 d 2 1

21.

t+5 t+3 t+5 t+3

23.

6x5 6x+5 6x5 6x+5

25.

p+6 4p+3 p+6 4p+3

27.

2d+9 d+11 2d+9 d+11

29.

12b+5 3b−1 12b+5 3b−1

31.

4y−1 y+4 4y−1 y+4

33.

10x+4y xy 10x+4y xy

35.

9a7 a 2 2a3 9a7 a 2 2a3

37.

2 y 2 y+9 y 2 y2 2 y 2 y+9 y 2 y2

39.

5 z 2 +z+5 z 2 z2 5 z 2 +z+5 z 2 z2

41.

x+2xy+y x+xy+y+1 x+2xy+y x+xy+y+1

43.

2b+7a a b 2 2b+7a a b 2

45.

18+ab 4b 18+ab 4b

47.

ab ab

49.

3 c 2 +3c2 2 c 2 +5c+2 3 c 2 +3c2 2 c 2 +5c+2

51.

15x+7 x−1 15x+7 x−1

53.

x+9 x−9 x+9 x−9

55.

1 y+2 1 y+2

57.

4 4

Review Exercises

1.

−5 −5

3.

53

5.

y=24 y=24

7.

32m 32m

9.

whole

11.

irrational

13.

16 16

15.

3 a 6 3 a 6

17.

x 3 32 y 3 x 3 32 y 3

19.

a a

21.

1.634× 10 7 1.634× 10 7

23.

14

25.

5 3 5 3

27.

4 2 5 4 2 5

29.

7 2 50 7 2 50

31.

10 3 10 3

33.

−3 −3

35.

3 x 3 +4 x 2 +6 3 x 3 +4 x 2 +6

37.

5 x 2 x+3 5 x 2 x+3

39.

k 2 3k18 k 2 3k18

41.

x 3 + x 2 +x+1 x 3 + x 2 +x+1

43.

3 a 2 +5ab2 b 2 3 a 2 +5ab2 b 2

45.

9p 9p

47.

4 a 2 4 a 2

49.

(4a3)(2a+9) (4a3)(2a+9)

51.

( x+5 ) 2 ( x+5 ) 2

53.

(2h3k) 2 (2h3k) 2

55.

(p+6)( p 2 6p+36) (p+6)( p 2 6p+36)

57.

(4q3p)(16 q 2 +12pq+9 p 2 ) (4q3p)(16 q 2 +12pq+9 p 2 )

59.

( p+3 ) 1 3 ( −5p24 ) ( p+3 ) 1 3 ( −5p24 )

61.

x+3 x4 x+3 x4

63.

1 2 1 2

65.

m+2 m3 m+2 m3

67.

6x+10y xy 6x+10y xy

69.

1 6 1 6

Practice Test

1.

rational

3.

x=–2 x=–2

5.

3,141,500

7.

16 16

9.

9

11.

2x 2x

13.

21

15.

3 x 4 3 x 4

17.

21 6 21 6

19.

13 q 3 4 q 2 5q 13 q 3 4 q 2 5q

21.

n 3 6 n 2 +12n8 n 3 6 n 2 +12n8

23.

(4x+9)(4x9) (4x+9)(4x9)

25.

(3c11)(9 c 2 +33c+121) (3c11)(9 c 2 +33c+121)

27.

4z3 2z1 4z3 2z1

29.

3a+2b 3b 3a+2b 3b

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/algebra-and-trigonometry/pages/1-introduction-to-prerequisites
Citation information

© Dec 8, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.